Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Boundary value problems of holomorphic vector functions and applications to anisotropic elasticity

Authors: M. Z. Wang and G. P. Yan
Journal: Quart. Appl. Math. 55 (1997), 231-241
MSC: Primary 73B40; Secondary 73V35
DOI: https://doi.org/10.1090/qam/1447576
MathSciNet review: MR1447576
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using Stroh's formalism, plane problems of anisotropic elasticity are turned into the boundary value problems of holomorphic functions. A general method is presented for solving the boundary value problems. The displacement and the stress boundary value problems of an anisotropic body in an elliptical region are solved.

References [Enhancements On Off] (What's this?)

  • [1] J. D. Eshelby, W. T. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation theory, Acta Metallurgica 1, 251-259 (1953)
  • [2] A. N. Stroh, Dislocations and cracks in anisotropic elasticity, Philos. Mag. 3, 625-646 (1958) MR 0094961
  • [3] A. N. Stroh, Steady state problems in anisotropic elasticity, J. Math. Phys. 41, 77-103 (1962) MR 0139306
  • [4] D. M. Barnett and J. Lothe, Synthesis of the sextic and the integral formalism for dislocations, Green's function and surface waves in anisotropic elastic solids, Phys. Norv. 7, 13-19 (1973)
  • [5] D. M. Barnett and J. Lothe, An image force theorem for dislocations in anisotropic bicrystals, J. Phys. Fluids 4, 1618-1635 (1974)
  • [6] D. M. Barnett and J. Lothe, Line force loadings on anisotropic half-spaces and wedges, Phys. Norv. 8, 13-22 (1985)
  • [7] D. M. Barnett and J. Lothe, Free surface (Rayleigh) waves in anisotropic elastic half-spaces: The surface impedance method, Proc. Royal Soc. London Ser. A 402, 135-152 (1985) MR 819916
  • [8] R. J. Asaro, J. P. Hirth, D. M. Barnett, and J. Lothe, A further synthesis of sextic and integral theories for dislocations and line forces in anisotropic media, Phys. Status Solidi B 60, 261-271 (1973)
  • [9] P. Chadwick and G. D. Smith, Foundations of the theory of surface waves in anisotropic elastic materials, Adv. Appl. Mech. 17, 303-376 (1977)
  • [10] H. O. K. Kirchner and J. Lothe, Displacements and tractions along interfaces, Philos. Mag. A 56, 583-594 (1987)
  • [11] T. C. T. Ting, Explicit solution and invariance of the singularities at an interface crack in anisotropic composites, Internat. Solids Structures 22, 965-983 (1986) MR 865545
  • [12] T. C. T. Ting, Line forces and dislocations in anisotropic elastic composite wedges and spaces, Phys. Status Solidi B 146, 81-90 (1988)
  • [13] T. C. T. Ting, The anisotropic elastic wedge under a concentrated couple, Quart. J. Mech. Appl. Math. 41, 562-578 (1988) MR 980217
  • [14] R. Chadwick, Wave propagation in transversely isotropic elastic media. I. Homogeneous plane waves. II. Surface waves. III. The special case $ {a_s} = 0$ and the inextensible limit, Proc. Roy. Soc. London Ser. A 422, 23-121 (1989) MR 990852
  • [15] Chyanbin Hwu and T. C. T. Ting, Two-dimensional problems of the anisotropic elastic solids with an elliptic inclusion, Quart. J. Mech. Appl. Math. 42, 553-572 (1989) MR 1033702
  • [16] Qianqian Li and T. C. T. Ting, Line inclusions in anisotropic elastic solids, J. Appl. Mech. 56, 556-563 (1989)
  • [17] Jianmin Qu and Qianqian Li, Interfacial dislocation and its application to interface crack in anisotropic materials, J. Elasticity 26, 169-195 (1991)
  • [18] Zhigang Suo, Singularities, interfaces and cracks in dissimilar anisotropic media, Proc. Roy. Soc. London Ser. A 427, 331-358 (1991) MR 1039790
  • [19] T. C. T. Ting, Some identities and the structure of $ {N_i}$ in the Stroh formalism of anisotropic elasticity, Quart. Appl. Math. 46, 109-120 (1988) MR 934686
  • [20] T. C. T. Ting, Effects of change of reference coordinates on the stress analyses of anisotropic elastic materials, Internat. J. Solids Structures 18, 139-152 (1982) MR 639099
  • [21] T. C. T. Ting and Chyanbin Hwu, Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N, Internat. J. Solids Structures 24, 65-76 (1988)
  • [22] T. C. T. Ting, On the orthogonal, Hermitian and positive definite properties of the matrices $ i{B^{ - 1}}\bar B$ and $ - i{A^{ - 1}}\bar A$ in anisotropic elasticity, J. Elasticity 30, 277-284 (1993) MR 1220167
  • [23] T. C. T. Ting, Barnett-Lothe tensors and their associated tensors for monoclinic materials with the symmetry plane at $ {x_3} = 0$, J. Elasticity 27, 143-165 (1992) MR 1151545
  • [24] T. C. T. Ting and G. P. Yan, The anisotropic elastic solid with an elliptic hole or rigid inclusion, Internat. J. Solids Structures 27, 1879-1894 (1991)
  • [25] T. C. T. Ting and M. Z. Wang, Generalized Stroh formalism for anisotropic elasticity for general boundary conditions, Acta Mech. Sinica 8, 193-207 (1992)
  • [26] M. Z. Wang, T. C. T. Ting, and G. P. Yan, The anisotropic elastic semi-infinite strip, Quart. Appl. Math. 51, 283-297 (1993) MR 1218369
  • [27] S. G. Lekhnitskii, Anisotropic Plate, Gordon and Breach Science Publishers, 1968
  • [28] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, 1963 MR 0176648
  • [29] H. J. Gao, Stress of holes in anisotropic elastic solids: conformal mapping and boundary perturbation, Quart. J. Mech. Appl. Math. 45, 149-168 (1992) MR 1176729

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73B40, 73V35

Retrieve articles in all journals with MSC: 73B40, 73V35

Additional Information

DOI: https://doi.org/10.1090/qam/1447576
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society