Boundary value problems of holomorphic vector functions and applications to anisotropic elasticity

Authors:
M. Z. Wang and G. P. Yan

Journal:
Quart. Appl. Math. **55** (1997), 231-241

MSC:
Primary 73B40; Secondary 73V35

DOI:
https://doi.org/10.1090/qam/1447576

MathSciNet review:
MR1447576

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using Stroh's formalism, plane problems of anisotropic elasticity are turned into the boundary value problems of holomorphic functions. A general method is presented for solving the boundary value problems. The displacement and the stress boundary value problems of an anisotropic body in an elliptical region are solved.

**[1]**J. D. Eshelby, W. T. Read, and W. Shockley,*Anisotropic elasticity with applications to dislocation theory*, Acta Metallurgica**1**, 251-259 (1953)**[2]**A. N. Stroh,*Dislocations and cracks in anisotropic elasticity*, Philos. Mag.**3**, 625-646 (1958) MR**0094961****[3]**A. N. Stroh,*Steady state problems in anisotropic elasticity*, J. Math. Phys.**41**, 77-103 (1962) MR**0139306****[4]**D. M. Barnett and J. Lothe,*Synthesis of the sextic and the integral formalism for dislocations, Green's function and surface waves in anisotropic elastic solids*, Phys. Norv.**7**, 13-19 (1973)**[5]**D. M. Barnett and J. Lothe,*An image force theorem for dislocations in anisotropic bicrystals*, J. Phys. Fluids**4**, 1618-1635 (1974)**[6]**D. M. Barnett and J. Lothe,*Line force loadings on anisotropic half-spaces and wedges*, Phys. Norv.**8**, 13-22 (1985)**[7]**D. M. Barnett and J. Lothe,*Free surface (Rayleigh) waves in anisotropic elastic half-spaces: The surface impedance method*, Proc. Royal Soc. London Ser. A**402**, 135-152 (1985) MR**819916****[8]**R. J. Asaro, J. P. Hirth, D. M. Barnett, and J. Lothe,*A further synthesis of sextic and integral theories for dislocations and line forces in anisotropic media*, Phys. Status Solidi B**60**, 261-271 (1973)**[9]**P. Chadwick and G. D. Smith,*Foundations of the theory of surface waves in anisotropic elastic materials*, Adv. Appl. Mech.**17**, 303-376 (1977)**[10]**H. O. K. Kirchner and J. Lothe,*Displacements and tractions along interfaces*, Philos. Mag. A**56**, 583-594 (1987)**[11]**T. C. T. Ting,*Explicit solution and invariance of the singularities at an interface crack in anisotropic composites*, Internat. Solids Structures**22**, 965-983 (1986) MR**865545****[12]**T. C. T. Ting,*Line forces and dislocations in anisotropic elastic composite wedges and spaces*, Phys. Status Solidi B**146**, 81-90 (1988)**[13]**T. C. T. Ting,*The anisotropic elastic wedge under a concentrated couple*, Quart. J. Mech. Appl. Math.**41**, 562-578 (1988) MR**980217****[14]**R. Chadwick,*Wave propagation in transversely isotropic elastic media*. I.*Homogeneous plane waves*. II.*Surface waves*. III.*The special case and the inextensible limit*, Proc. Roy. Soc. London Ser. A**422**, 23-121 (1989) MR**990852****[15]**Chyanbin Hwu and T. C. T. Ting,*Two-dimensional problems of the anisotropic elastic solids with an elliptic inclusion*, Quart. J. Mech. Appl. Math.**42**, 553-572 (1989) MR**1033702****[16]**Qianqian Li and T. C. T. Ting,*Line inclusions in anisotropic elastic solids*, J. Appl. Mech.**56**, 556-563 (1989)**[17]**Jianmin Qu and Qianqian Li,*Interfacial dislocation and its application to interface crack in anisotropic materials*, J. Elasticity**26**, 169-195 (1991)**[18]**Zhigang Suo,*Singularities, interfaces and cracks in dissimilar anisotropic media*, Proc. Roy. Soc. London Ser. A**427**, 331-358 (1991) MR**1039790****[19]**T. C. T. Ting,*Some identities and the structure of**in the Stroh formalism of anisotropic elasticity*, Quart. Appl. Math.**46**, 109-120 (1988) MR**934686****[20]**T. C. T. Ting,*Effects of change of reference coordinates on the stress analyses of anisotropic elastic materials*, Internat. J. Solids Structures**18**, 139-152 (1982) MR**639099****[21]**T. C. T. Ting and Chyanbin Hwu,*Sextic formalism in anisotropic elasticity for almost non-semisimple matrix***N**, Internat. J. Solids Structures**24**, 65-76 (1988)**[22]**T. C. T. Ting,*On the orthogonal, Hermitian and positive definite properties of the matrices**and**in anisotropic elasticity*, J. Elasticity**30**, 277-284 (1993) MR**1220167****[23]**T. C. T. Ting,*Barnett-Lothe tensors and their associated tensors for monoclinic materials with the symmetry plane at*, J. Elasticity**27**, 143-165 (1992) MR**1151545****[24]**T. C. T. Ting and G. P. Yan,*The anisotropic elastic solid with an elliptic hole or rigid inclusion*, Internat. J. Solids Structures**27**, 1879-1894 (1991)**[25]**T. C. T. Ting and M. Z. Wang,*Generalized Stroh formalism for anisotropic elasticity for general boundary conditions*, Acta Mech. Sinica**8**, 193-207 (1992)**[26]**M. Z. Wang, T. C. T. Ting, and G. P. Yan,*The anisotropic elastic semi-infinite strip*, Quart. Appl. Math.**51**, 283-297 (1993) MR**1218369****[27]**S. G. Lekhnitskii,*Anisotropic Plate*, Gordon and Breach Science Publishers, 1968**[28]**N. I. Muskhelishvili,*Some Basic Problems of the Mathematical Theory of Elasticity*, Noordhoff, 1963 MR**0176648****[29]**H. J. Gao,*Stress of holes in anisotropic elastic solids: conformal mapping and boundary perturbation*, Quart. J. Mech. Appl. Math.**45**, 149-168 (1992) MR**1176729**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73B40,
73V35

Retrieve articles in all journals with MSC: 73B40, 73V35

Additional Information

DOI:
https://doi.org/10.1090/qam/1447576

Article copyright:
© Copyright 1997
American Mathematical Society