Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Equations of motion for constrained mechanical systems and the extended d'Alembert's principle


Authors: Firdaus E. Udwadia, Robert E. Kalaba and Hee-Chang Eun
Journal: Quart. Appl. Math. 55 (1997), 321-331
MSC: Primary 70F25; Secondary 70E99, 70F20
DOI: https://doi.org/10.1090/qam/1447580
MathSciNet review: MR1447580
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Starting from the principle of virtual work, this paper states and establishes an extended version of D'Alembert's Principle. Using this extended principle and elementary linear algebra, it develops, from first principles, the explicit equation of motion for constrained mechanical systems. The results are compared with the authors' previous results. The approach points to new ways of extending these results.


References [Enhancements On Off] (What's this?)

  • [1] J. le R. D'Alembert, Traite de Dynamique, Paris, 1743
  • [2] P. Appell, Traite de Mecanique Rationalle, Third Edition, Paris, 1911
  • [3] Dynamical systems. III, 2nd ed., Encyclopaedia of Mathematical Sciences, vol. 3, Springer-Verlag, Berlin, 1993. Mathematical aspects of classical and celestial mechanics; A translation of Current problems in mathematics. Fundamental directions, Vol. 3 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 [ MR0833508 (87i:58151)]; Translation by A. Iacob; Translation edited by V. I. Arnol′d. MR 1292465
    V. I. Arnol′d, V. V. Kozlov, and A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Dynamical systems, III, Encyclopaedia Math. Sci., vol. 3, Springer, Berlin, 1993, pp. vii–xiv and 1–291. MR 1292466, https://doi.org/10.1007/978-3-540-48926-9_1
  • [4] P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math. 2 (1950), 129–148. MR 0043724
  • [5] P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. London. Ser. A 246 (1958), 326–332. MR 0094205, https://doi.org/10.1098/rspa.1958.0141
  • [6] Paul A. M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, vol. 2, Belfer Graduate School of Science, New York; produced and distributed by Academic Press, Inc., New York, 1967. Second printing of the 1964 original. MR 2220894
  • [7] F. Gantmacher, Lectures in Analytical Mechanics, Mir Publishers, Moscow, 1970
  • [8] Carl Friedrich Gauß, Über ein neues allgemeines Grundgesetz der Mechanik, J. Reine Angew. Math. 4 (1829), 232–235 (German). MR 1577733, https://doi.org/10.1515/crll.1829.4.232
  • [9] W. Gibbs, On the fundamental formulae of dynamics, Amer. J. Math. 2, 49-64 (1879)
  • [10] Herbert Goldstein, Classical mechanics, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1980. Addison-Wesley Series in Physics. MR 575343
  • [11] A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Systems, Accademia Nazionale Dei Lincei, Roma, 1976
  • [12] J. L. Lagrange, Mechanique Analytique, Mme. De Courcier, Paris, 1787
  • [13] E. H. Moore, On the reciprocal of the general algebraic matrix, Abstract, Bull. Amer. Math. Soc. 26, 394-395 (1920)
  • [14] Yu. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, 1968, English translation by Amer. Math. Soc., Vol. 33, Providence, Rhode Island, 1972
  • [15] L. A. Pars, A Treatise on Analytical Dynamics, Second Printing, Ox Bow Press, Connecticut, 1979 (originally published in 1965)
  • [16] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR 0069793
  • [17] H. Poincaré, Les Méthodes Nouvelles de la Mecanique Celeste, Gauthier-Villars, Paris, 1899
  • [18] R. M. Rosenberg, Analytical Mechanics of Particles, Third Printing, Plenum Press, 1993
  • [19] Firdaus E. Udwadia and Robert E. Kalaba, A new perspective on constrained motion, Proc. Roy. Soc. London Ser. A 439 (1992), no. 1906, 407–410. MR 1193009, https://doi.org/10.1098/rspa.1992.0158
  • [20] Firdaus E. Udwadia and Robert E. Kalaba, On motion, J. Franklin Inst. 330 (1993), no. 3, 571–577. MR 1216981, https://doi.org/10.1016/0016-0032(93)90099-G
  • [21] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. With an introduction to the problem of three bodies; Reprint of the 1937 edition; With a foreword by William McCrea. MR 992404

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 70F25, 70E99, 70F20

Retrieve articles in all journals with MSC: 70F25, 70E99, 70F20


Additional Information

DOI: https://doi.org/10.1090/qam/1447580
Article copyright: © Copyright 1997 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website