Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Kinematic compatibility conditions of third order for a three-dimensional surface vector field


Author: R. S. D. Thomas
Journal: Quart. Appl. Math. 55 (1997), 635-657
MSC: Primary 53A17; Secondary 73B99
DOI: https://doi.org/10.1090/qam/1486540
MathSciNet review: MR1486540
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Cohen and R. S. D. Thomas, Plane wave propagation and evolution for quasilinear hyperbolic systems, Util. Math. 24, 199-233 (1983) MR 724771
  • [2] H. Cohen and R. S. D. Thomas, Transient waves in inhomogeneous isotropic elastic plates, Acta Mech. 53, 141-161 (1984) MR 838780
  • [3] H. Cohen and R. S. D. Thomas, Transient waves in inhomogeneous anisotropic elastic plates, Acta Mech. 58, 41-57 (1986) MR 838780
  • [4] H. Cohen and R. S. D. Thomas, Transient waves in inhomogeneous anisotropic elastic shells, Acta Mech. 77, 47-67 (1989) MR 994888
  • [5] H. Cohen and R. S. D. Thomas, Transient waves in inhomogeneous elastic shells of variable thickness, Acta Mech. 83, 177-186 (1990) MR 1076043
  • [6] H. Cohen and C.-C. Wang, On compatibility conditions for singular surfaces, Arch. Rat. Mech. Anal. 80, 205-261 (1982) MR 674546
  • [7] John M. Lee, Ricci: a Mathematica package for doing tensor calculations in differential geometry, 1992 (unpublished; available on WWW from http://www.wri.com/WWWDocs/mathsource/ or by FTP from mathsource.wri.com)
  • [8] R. S. D. Thomas, Kinematic compatibility conditions for a three-dimensional vector field on a moving surface, Util. Math. 43, 7-32 (1993) MR 1220681
  • [9] R. S. D. Thomas, Geometric compatibility conditions of third order for a three-dimensional surface vector field, Algebras, Groups, and Geometries 10, 149-167 (1993) MR 1233392
  • [10] R. S. D. Thomas, Third-order kinematic compatibility conditions for a vector field on an embedded surface, Technical Report 1994-09-1, Department of Applied Mathematics, University of Manitoba, September, 1994
  • [11] T. Y. Thomas, Plastic flow and fracture in solids, Academic Press, New York, 1961 MR 0127630
  • [12] C. Truesdell and R. A. Toupin, The classical field theories in Encyclopedia of Physics III/1 (S. Flügge, ed.), Springer, Berlin, 1960 MR 0118005

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 53A17, 73B99

Retrieve articles in all journals with MSC: 53A17, 73B99


Additional Information

DOI: https://doi.org/10.1090/qam/1486540
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society