Kinetic and fluid aspects of gas discharges

Author:
A. Nouri

Journal:
Quart. Appl. Math. **56** (1998), 147-155

MSC:
Primary 76X05; Secondary 35Q35, 76P05, 82D10

DOI:
https://doi.org/10.1090/qam/1604821

MathSciNet review:
MR1604821

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Gas discharges are investigated in two levels: the kinetic one, where a stationary electron distribution is determined, and the fluid one, where use of the small mobility of ions with respect to the mobility of electrons leads to a simplified model and a boundary layer analysis.

**[1]**J. P. Boeuf and L. C. Pitchford,*Pseudospark discharges via computer simulation*, IEEE Transactions on Plasma Science, Vol. 19, No. 2, 1991, pp. 286-296**[2]**J. P. Boeuf and P. Belenguer,*Fundamental properties of RF glow discharges: an approach based on self-consistent numerical models*, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 1990**[3]**H. Gajewski,*On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors*, Z. Angew. Math. Mech.**65**, 101-108 (1985) MR**841263****[4]**F. Golse, P. L. Lions, B. Perthame, and R. Sentis,*Regularity of the moments of the solution of a transport equation*, J. Funct. Anal.**76**, 110-125 (1988) MR**923047****[5]**N. Krall and A. W. Trivelpiece,*Principles of Plasma Physics*, McGraw-Hill, 1973**[6]**J. L. Lions,*Quelques méthodes de résolution de problèmes aux limites non linéaires*, Paris, Dunod; Gauthier-Villars, 1969 MR**0259693****[7]**M. S. Mock,*An initial value problem for semiconductor device theory*, SIAM J. Math Anal.**5**, 597-612 (1974) MR**0417573****[8]**A. Nouri and F. Poupaud,*Stationary solutions of boundary value problems for Maxwell Boltzmann system modelling degenerate semi-conductors*, SIAM J. Math. Anal.**26**, 1143-1156 (1995) MR**1347414****[9]**Y. P. Raizer,*Gas Discharge Physics*, Springer-Verlag, 1991**[10]**P. Segur and J. Lerouvillois-Gaillard,*Inelastic collision integral approximation of Boltzmann equation*, J. Plasma Physics**16**, 1-15 (1976)**[11]**T. I. Seidman and G. M. Troianiello,*Time-dependent solutions of a nonlinear system arising in semiconductor theory*, Nonlinear Analysis, Theory, Methods and Applications, Vol. 9, No. 11, 1985, pp. 1137-1157 MR**813649****[12]**T. I. Seidman,*Time-dependent solutions of a nonlinear system arising in semiconductor theory*-II.*Boundedness and periodicity*, Nonlinear Analysis, Theory, Methods and Applications, Vol. 10, No. 5, 1986, pp. 491-502 MR**839361**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76X05,
35Q35,
76P05,
82D10

Retrieve articles in all journals with MSC: 76X05, 35Q35, 76P05, 82D10

Additional Information

DOI:
https://doi.org/10.1090/qam/1604821

Article copyright:
© Copyright 1998
American Mathematical Society