Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Kinetic and fluid aspects of gas discharges


Author: A. Nouri
Journal: Quart. Appl. Math. 56 (1998), 147-155
MSC: Primary 76X05; Secondary 35Q35, 76P05, 82D10
DOI: https://doi.org/10.1090/qam/1604821
MathSciNet review: MR1604821
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Gas discharges are investigated in two levels: the kinetic one, where a stationary electron distribution is determined, and the fluid one, where use of the small mobility of ions with respect to the mobility of electrons leads to a simplified model and a boundary layer analysis.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Boeuf and L. C. Pitchford, Pseudospark discharges via computer simulation, IEEE Transactions on Plasma Science, Vol. 19, No. 2, 1991, pp. 286-296
  • [2] J. P. Boeuf and P. Belenguer, Fundamental properties of RF glow discharges: an approach based on self-consistent numerical models, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 1990
  • [3] H. Gajewski, On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech. 65, 101-108 (1985) MR 841263
  • [4] F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76, 110-125 (1988) MR 923047
  • [5] N. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, 1973
  • [6] J. L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires, Paris, Dunod; Gauthier-Villars, 1969 MR 0259693
  • [7] M. S. Mock, An initial value problem for semiconductor device theory, SIAM J. Math Anal. 5, 597-612 (1974) MR 0417573
  • [8] A. Nouri and F. Poupaud, Stationary solutions of boundary value problems for Maxwell Boltzmann system modelling degenerate semi-conductors, SIAM J. Math. Anal. 26, 1143-1156 (1995) MR 1347414
  • [9] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, 1991
  • [10] P. Segur and J. Lerouvillois-Gaillard, Inelastic collision integral approximation of Boltzmann equation, J. Plasma Physics 16, 1-15 (1976)
  • [11] T. I. Seidman and G. M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory, Nonlinear Analysis, Theory, Methods and Applications, Vol. 9, No. 11, 1985, pp. 1137-1157 MR 813649
  • [12] T. I. Seidman, Time-dependent solutions of a nonlinear system arising in semiconductor theory-II. Boundedness and periodicity, Nonlinear Analysis, Theory, Methods and Applications, Vol. 10, No. 5, 1986, pp. 491-502 MR 839361

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76X05, 35Q35, 76P05, 82D10

Retrieve articles in all journals with MSC: 76X05, 35Q35, 76P05, 82D10


Additional Information

DOI: https://doi.org/10.1090/qam/1604821
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society