Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Asymptotic methods for magnetohydrodynamic instability


Authors: Misha Vishik and Susan Friedlander
Journal: Quart. Appl. Math. 56 (1998), 377-398
MSC: Primary 76E25; Secondary 35Q35, 76W05
DOI: https://doi.org/10.1090/qam/1622515
MathSciNet review: MR1622515
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition for instability is obtained for the linearized equations of ideal magnetohydrodynamics. The results are proved by studying the full asymptotic expansion for the evolution operator using oscillatory integrals. It is shown that the growth rate of the evolution operator is bounded from below by the growth rate of an operator given by a system of local hyperbolic PDEs.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76E25, 35Q35, 76W05

Retrieve articles in all journals with MSC: 76E25, 35Q35, 76W05


Additional Information

DOI: https://doi.org/10.1090/qam/1622515
Article copyright: © Copyright 1998 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website