Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic methods for magnetohydrodynamic instability


Authors: Misha Vishik and Susan Friedlander
Journal: Quart. Appl. Math. 56 (1998), 377-398
MSC: Primary 76E25; Secondary 35Q35, 76W05
DOI: https://doi.org/10.1090/qam/1622515
MathSciNet review: MR1622515
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition for instability is obtained for the linearized equations of ideal magnetohydrodynamics. The results are proved by studying the full asymptotic expansion for the evolution operator using oscillatory integrals. It is shown that the growth rate of the evolution operator is bounded from below by the growth rate of an operator given by a system of local hyperbolic PDEs.


References [Enhancements On Off] (What's this?)

  • [1] L. Boutet de Monvel, Hypoelliptic operators with double characteristics, Comm. Pure Appl. Math. 27, 585-639 (1974) MR 0370271
  • [2] A. Calderon and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. USA 69, 1185-1187 (1972)
  • [3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, 1981
  • [4] J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations, North-Holland Publishing Co., Amsterdam, New York, 1982 MR 678605
  • [5] R. Coifman and Y. Meyer, Au delá des opérateurs pseudodifferentials, Asterisque 57, 1-185 (1978) MR 518170
  • [6] K. S. Eckhoff, Linear waves and stability in ideal magnetohydrodynamics, Phys. Fluids 30, no. 12, 3673-3685 (1987)
  • [7] F. G. Friedlander, Sound Pulses, Cambridge University Press, 1958 MR 0097233
  • [8] S. Friedlander and M. Vishik, Instability criteria for steady flows of a perfect fluid, Chaos 2, no. 3, 455-460 (1992) MR 1184488
  • [9] S. Friedlander and M. Vishik, On stability and instability criteria for magnetohydrodynamics, Chaos 5, no. 2, 416-423 (1995) MR 1335113
  • [10] E. Hameiri, On the essential spectrum of ideal MHD, Comm. Pure Appl. Math. 38, 43-66 (1985) MR 768104
  • [11] J. Hounie, On the $ L^{2}$-continuity of pseudodifferential operators, Comm. Partial Differential Equations 11, no. 7, 765-778 (1986) MR 837930
  • [12] A. E. Lifschitz, Continuous spectrum in general toroidal systems (ballooning and Alfven modes), Phys. Lett. 122A, 350-356 (1987)
  • [13] D. Ludwig, Exact and asymptotic solution of the Cauchy problem, Comm. Pure Appl. Math. 13, 473-508 (1960) MR 0115010
  • [14] E. Stein, Harmonic Analysis, Princeton University Press, 1994
  • [15] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Plenum Press, New York, London, 1980 MR 597145
  • [16] M. Vishik, Spectrum of small oscillations of an ideal fluid and Lyapunov exponents, J. Math. Pures Appl. 75, 531-557 (1996) MR 1423046
  • [17] M. Vishik and S. Friedlander, Dynamo theory methods for hydrodynamic stability, J. Math. Pures Appl. 72, 145-180 (1993) MR 1216094

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76E25, 35Q35, 76W05

Retrieve articles in all journals with MSC: 76E25, 35Q35, 76W05


Additional Information

DOI: https://doi.org/10.1090/qam/1622515
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society