Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A uniqueness theorem for a Robin boundary value problem of physical geodesy


Author: Jesús Otero
Journal: Quart. Appl. Math. 56 (1998), 245-257
MSC: Primary 35J25; Secondary 86A30
DOI: https://doi.org/10.1090/qam/1622562
MathSciNet review: MR1622562
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We get a uniqueness theorem for a Robin type boundary value problem for the Laplace equation arising in Physical Geodesy in the context of the gravimetric determination of the geoid. The boundary is an oblate ellipsoid of revolution and we have uniqueness of solutions provided that its eccentricity is (approximately) less than 0.526428.


References [Enhancements On Off] (What's this?)

  • [1] A. Bjerhammar, On the determination of the shape of the geoid and the shape of the earth from an ellipsoidal surface of reference, Bull. Geod. 81, 235-264 (1966) MR 0200064
  • [2] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice Hall, New Jersey, 1976 MR 0394451
  • [3] E. Fabes, Layer potential methods for boundary value problems on Lipschitz domains, Lecture Notes in Mathematics, vol. 1344, Springer-Verlag, Berlin/Heidelberg/New York, 1988, pp. 55-80 MR 973881
  • [4] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd edition, Springer-Verlag, Berlin/Heidelberg/New York, 1983 MR 737190
  • [5] W. A. Heiskanen and H. Moritz, Physical Geodesy, W. H. Freeman and Co., San Francisco/Londres, 1967
  • [6] L. Hörmander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62, 1-52 (1976) MR 0602181
  • [7] L. Hörmander, Uniqueness theorems and estimates for normally hyperbolic partial differential equations of the second order, Compt. Rend. 12 Congr. Math. Scandinaves, Lunds Universitets Matematiska Institution, Lund, 1954, pp. 105-115 MR 0065783
  • [8] T. M. MacRobert, Spherical harmonics: An elementary treatise on harmonic functions with applications, 3rd edition, Pergamon Press, Oxford, 1967 MR 0220985
  • [9] M. S. Molodensky, V. F. Eremeev, and M. I. Yurkina, Methods for study of the external gravitational field and figure of the earth, Transl. from Russian (1960), Israel Program for Scientific Translations, Jerusalem, 1962
  • [10] H. Moritz, Advanced Physical Geodesy, Herbert Wichmann and Abacus Press, Karlsruhe/Tunbridge, 1980
  • [11] H. Moritz, Geodetic reference system 1980, Bull. Geod. 62, No. 3, 348-358 (1988)
  • [12] J. Otero and J. Capdevila, A series solution for Zagrebin's problem, Geodetic Theory Today: III Hotine-Marussi Symposium on Mathematical Geodesy (edited and convened by F. Sansò), International Association of Geodesy Symposia, Symposium No. 114, Springer-Verlag, Berlin/Heidelberg/New York, 1995, pp. 280-293
  • [13] F. Sansò and G. Sona, The challenge of computing the geoid in the nineties, Surveys in Geophysics 14, 339-371 (1993)
  • [14] M. I. Vishik, An inequality for boundary values of harmonic functions on a sphere (in Russian), Uspekhi Matem. Nauk 6, no. 2, 165-166, 1951 (MR 13, No.2, 235, 1952) MR 0043279
  • [15] V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker Inc., New York, 1971 MR 0268497
  • [16] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987 MR 895589
  • [17] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, 2nd edition, Addison-Wesley Publishing Company, Inc., Redwood City, California, 1991

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35J25, 86A30

Retrieve articles in all journals with MSC: 35J25, 86A30


Additional Information

DOI: https://doi.org/10.1090/qam/1622562
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society