Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



The explicit Gibbs-Appell equation and generalized inverse forms

Authors: F. E. Udwadia and R. E. Kalaba
Journal: Quart. Appl. Math. 56 (1998), 277-288
MSC: Primary 70F25; Secondary 70H35
DOI: https://doi.org/10.1090/qam/1622570
MathSciNet review: MR1622570
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper develops an extended form of the Gibbs-Appell equation and shows that it is equivalent to the generalized inverse equation of motion. Both equations are shown to follow from Gauss's principle. An example to highlight the two equivalent, though different, equations of motion is provided. Conceptual differences between the equations, and differences in their practical application to physical situations are discussed.

References [Enhancements On Off] (What's this?)

  • [1] P. Appell, Traité de Mécanique Rationelle, Third edition, Paris, 1911
  • [2] P. Appell, Exemple de Mouvement d'un Point Assujeti a une Liason Exprimée par une Relation Non Lineare Entre les Composantes de la Vitesse, Comptes Rendus, 1911, pp. 48-50
  • [3] C. F. Gauss, Über ein neues allgemeines Grundgesetz der Mechanik, Journal für die Reine und Angewandte Mathematik 4, 232-235 (1829)
  • [4] W. J. Gibbs, On the fundamental formulae of dynamics, Amer. Jour. Math. 2, 49-64 (1879)
  • [5] Robert E. Kalaba and Firdaus E. Udwadia, Lagrangian mechanics, Gauss’ principle, quadratic programming, and generalized inverses: new equations for non-holonomically constrained discrete mechanical systems, Quart. Appl. Math. 52 (1994), no. 2, 229–241. MR 1276235, https://doi.org/10.1090/qam/1276235
  • [6] Y. Neimark and N. Fufaev, Dynamics of Nonholonomic Systems, Amer. Math. Soc. Translations, vol. 33, 1972
  • [7] L. Pars, A Treatise on Analytical Dynamics, Ox Bow Press, Connecticut, Second Printing, 1972
  • [8] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR 0069793
  • [9] C. Radhakrishna Rao, Linear statistical inference and its applications, 2nd ed., John Wiley & Sons, New York-London-Sydney, 1973. Wiley Series in Probability and Mathematical Statistics. MR 0346957
  • [10] C. Radhakrishna Rao and Sujit Kumar Mitra, Generalized inverse of matrices and its applications, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0338013
  • [11] Firdaus E. Udwadia and Robert E. Kalaba, A new perspective on constrained motion, Proc. Roy. Soc. London Ser. A 439 (1992), no. 1906, 407–410. MR 1193009, https://doi.org/10.1098/rspa.1992.0158
  • [12] Firdaus E. Udwadia and Robert E. Kalaba, Analytical dynamics, Cambridge University Press, Cambridge, 1996. A new approach. MR 1447192
  • [13] Firdaus E. Udwadia, Robert E. Kalaba, and Hee-Chang Eun, Equations of motion for constrained mechanical systems and the extended d’Alembert’s principle, Quart. Appl. Math. 55 (1997), no. 2, 321–331. MR 1447580, https://doi.org/10.1090/qam/1447580
  • [14] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. With an introduction to the problem of three bodies; Reprint of the 1937 edition; With a foreword by William McCrea. MR 992404

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 70F25, 70H35

Retrieve articles in all journals with MSC: 70F25, 70H35

Additional Information

DOI: https://doi.org/10.1090/qam/1622570
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society