Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



The explicit Gibbs-Appell equation and generalized inverse forms

Authors: F. E. Udwadia and R. E. Kalaba
Journal: Quart. Appl. Math. 56 (1998), 277-288
MSC: Primary 70F25; Secondary 70H35
DOI: https://doi.org/10.1090/qam/1622570
MathSciNet review: MR1622570
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper develops an extended form of the Gibbs-Appell equation and shows that it is equivalent to the generalized inverse equation of motion. Both equations are shown to follow from Gauss's principle. An example to highlight the two equivalent, though different, equations of motion is provided. Conceptual differences between the equations, and differences in their practical application to physical situations are discussed.

References [Enhancements On Off] (What's this?)

  • [1] P. Appell, Traité de Mécanique Rationelle, Third edition, Paris, 1911
  • [2] P. Appell, Exemple de Mouvement d'un Point Assujeti a une Liason Exprimée par une Relation Non Lineare Entre les Composantes de la Vitesse, Comptes Rendus, 1911, pp. 48-50
  • [3] C. F. Gauss, Über ein neues allgemeines Grundgesetz der Mechanik, Journal für die Reine und Angewandte Mathematik 4, 232-235 (1829)
  • [4] W. J. Gibbs, On the fundamental formulae of dynamics, Amer. Jour. Math. 2, 49-64 (1879)
  • [5] R. E. Kalaba and F. E. Udwadia, Lagrangian mechanics, Gauss's principle, quadratic programming, and generalized inverses: New equations for nonholonomically constrained discrete mechanical systems, Quart. Appl. Math. 52, 229-241 (1994) MR 1276235
  • [6] Y. Neimark and N. Fufaev, Dynamics of Nonholonomic Systems, Amer. Math. Soc. Translations, vol. 33, 1972
  • [7] L. Pars, A Treatise on Analytical Dynamics, Ox Bow Press, Connecticut, Second Printing, 1972
  • [8] R. Penrose, A generalized inverse of matrices, Proc. Camb. Philos. Soc. 51, 406-313 (1955) MR 0069793
  • [9] C. R. Rao, Linear Statistical Inference and Applications, Wiley, 1973 MR 0346957
  • [10] C. Rao and S. Mitra, Generalized Inverse of Matrices and Its Applications, John Wiley, New York, 1972 MR 0338013
  • [11] F. E. Udwadia and R. E. Kalaba, A New Perspective on Constrained Motion, Proc. Roy. Soc. London 439, 407-410 (1992) MR 1193009
  • [12] F. E. Udwadia and R. E. Kalaba, Analytical Dynamics: A New Approach, Cambridge University Press, London, 1996 MR 1447192
  • [13] F. E. Udwadia, R. E. Kalaba, and E. Hee-Chang, Equations of motion for constrained mechanical systems and the extended D'Alembert's principle, Quart. Appl. Math. 55, 321-331 (1997) MR 1447580
  • [14] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, Cambridge, Fourth Edition, 1937 MR 992404

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 70F25, 70H35

Retrieve articles in all journals with MSC: 70F25, 70H35

Additional Information

DOI: https://doi.org/10.1090/qam/1622570
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society