Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Gauss-Chebyshev quadrature formulae for strongly singular integrals


Author: Alexander M. Korsunsky
Journal: Quart. Appl. Math. 56 (1998), 461-472
MSC: Primary 65D32
DOI: https://doi.org/10.1090/qam/1637040
MathSciNet review: MR1637040
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. The quadrature formulae are derived from those for Cauchy singular integrals.


References [Enhancements On Off] (What's this?)

  • [1] D. L. Clemens and W. T. Ang, Stress intensity factors for the circular annulus crack, Internat. J. Engrg. Sci. 26, 325-329 (1988)
  • [2] G. Eason, B. Noble, and I. N. Sneddon, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Trans. Roy. Soc. 247, 529-551 (1955) MR 0069961
  • [3] A. Erdelyi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York, 1953
  • [4] F. Erdogan, G. D. Gupta, and T. S. Cook, Numerical Solution for Singular Integral Equations, Mechanics of Fracture, vol. 1, Noordhoff, Leiden, 1973, pp. 368-425 MR 0471394
  • [5] I. Gel'fand and V. Shilov, Generalized Functions, Academic Press, 1967 MR 0217416
  • [6] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover, New York, 1952 MR 0051411
  • [7] D. A. Hills, D. N. Dai, P. A. Kelly, and A. M. Korsunsky, Singular Integral Equations in the Mechanics of Fracture, Kluwer, Dordrecht, 1995
  • [8] N. I. Ioakimidis and P. S. Theocaris, On the numerical solution of singular integrodifferential equations, Quart. Appl. Math. 37, 325-331 (1979) MR 548991
  • [9] A. C. Kaya, Applications of Integral Equations with Strong Singularities in Fracture Mechanics, Ph. D. Thesis, Lehigh University, 1984
  • [10] A. C. Kaya and F. Erdogan, On the solution of integral equations with strongly singular kernels, Quart. Appl. Math. 45, 105-122 (1987) MR 885173
  • [11] A. M. Korsunsky, The Solution of Axisymmetric Crack Problems in Inhomogeneous Media, D. Phil. Thesis, University of Oxford, 1994
  • [12] A. M. Korsunsky and D. A. Hills, The solution of plane crack problems by dislocation dipole procedures, J. Strain Anal. 30, 21-27 (1995)
  • [13] A. M. Korsunsky, Fundamental eigenstrain solutions for axisymmetric crack problems, J. Mech. Phys. Solids 43, 1221-1241 (1995) MR 1342469
  • [14] H. R. Kutt, Quadrature Formulae for Finite-Part Integrals, Spec. Report WISK 178, Nat. Res. Inst. for Math. Sci., Pretoria, 1975
  • [15] H. R. Kutt, The numerical evaluation of principal value integrals by finite-part integration, Numer. Math. 24, 205-210 (1975) MR 0378366
  • [16] M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge, 1959 MR 0115085
  • [17] G. Monegato, Numerical evaluation of hypersingular integrals, J. Comp. Appl. Math. 50, 9-31 (1994) MR 1284249
  • [18] G. Monegato, On the weights of certain quadratures for the numerical evaluation of Cauchy principal value integrals and their derivatives, Numer. Math. 50, 273-281 (1987) MR 871229
  • [19] Y. Murakami, ed., Stress Intensity Factors Handbook, Pergamon Press, 1987
  • [20] D. F. Paget, The numerical evaluation of Hadamard finite-part integrals, Numer. Math. 36, 447-453 (1981) MR 614859
  • [21] N. J. Salamon and G. G. Walter, Limits of Lipschitz-Hankel integrals, J. Inst. Math. Appl. 24, 237-254 (1979) MR 550474
  • [22] G. Szegö, Orthogonal Polynomials, Colloquium Publications, vol. XXIII, Amer. Math. Soc., Providence, RI, 1939 MR 0106295

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65D32

Retrieve articles in all journals with MSC: 65D32


Additional Information

DOI: https://doi.org/10.1090/qam/1637040
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society