Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Eigenoscillations of mechanical systems with boundary conditions containing the frequency


Authors: B. P. Belinskiy and J. P. Dauer
Journal: Quart. Appl. Math. 56 (1998), 521-541
MSC: Primary 34B24; Secondary 34L10, 34L15, 73D30, 73K05
DOI: https://doi.org/10.1090/qam/1637056
MathSciNet review: MR1637056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of eigenoscillations of beam-mass systems is investigated and four examples are developed. For such systems the corresponding Sturm-Liouville problems contain the eigenvalue parameter in the boundary conditions. It is shown that the eigenfunctions for the systems considered form a basis of the appropriate Hilbert space. Rayleigh-Ritz formulas are also developed. Some lower bound estimations for eigenfrequencies are also found.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Keener, Principles of Applied Mathematics: Transformation and Approximation, Addison-Wesley Publishing Company, Redwood City, California, 1988 MR 943623
  • [2] E. A. Bambill and P. A. A. Laura, Application of the Rayleigh-Schmidt method when the boundary conditions contain the eigenvalues of the problem, Journal of Sound and Vibration 130, 167-170 (1989)
  • [3] S.-P. Cheng and N. C. Perkins, Free vibration of a sagged cable supporting a discrete mass, Journal of the Acoustical Society of America 91, 2654-2662 (1992)
  • [4] M. J. Maurizi and P. M. Bellés, An additional evaluation of free vibrations of beam-mass systems, Journal of Sound and Vibration 154, 182-186 (1992)
  • [5] H. Abramovich and O. Hamburger, Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass, Journal of Sound and Vibration 154, 67-80 (1992)
  • [6] O. A. Ladyzhenskaia, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, New York, 1985 MR 793735
  • [7] D. Gilbarg and N. S,. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983 MR 737190
  • [8] E. Zeidler, Nonlinear Functional Analysis and its Applications, Part II/A, Linear Monotone Operators, Springer-Verlag, New York, New York, 1990 MR 1033497
  • [9] M. V. Keldysh, On the characteristic values and characteristic functions of a certain class of non-selfadjoint equations, Dokl. Akad. Nauk SSSR 77, 11-14 (1951) (in Russian) MR 0041353
  • [10] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Selfadjoint Operators, Translation of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, Rhode Island, 1969 MR 0246142
  • [11] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburg 87A, 1-34 (1980) MR 600446
  • [12] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburg 77A, 293-308 (1977) MR 0593172
  • [13] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations, I, 2nd edition, University Press, Oxford, London, 1962 MR 0176151
  • [14] R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with a fluid, Tôhoku Mathematics Journal 35, 360-375 (1932)
  • [15] B. Friedman, Principles and Techniques of Applied Mathematics, John Wiley and Sons, New York, New York, 1956 MR 0079181
  • [16] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Zeitschrift 133, 301-312 (1973) MR 0335935
  • [17] Yu. I. Bobrovnitskii, On oscillations of some mechanical systems with nonorthogonal eigenfunctions, Acoustic Dynamics of Machines and Constructions ``Nauk", Moscow, Russia, 1973, pp. 6-9 (in Russian)
  • [18] D. B. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition, Quarterly Journal of Mathematics, Oxford, Vol. 2, 33-42 (1979) MR 528889
  • [19] D. B. Hinton, Eigenfunction expansions for a singular eigenvalue problem with eigenvalue parameter in the boundary condition, SIAM Journal of Mathematical Analysis 12, 572-584 (1981) MR 617716
  • [20] D. B. Hinton and J. K. Shaw, Differential Operators with Spectral Parameter Incompletely in the Boundary Conditions, Funkcialaj Ekvacioj (Serio Internacia), Vol. 33, 1990, pp. 363-385 MR 1086767
  • [21] D. B. Hinton and J. K. Shaw, Spectrum of a Hamiltonian System with Spectral Parameter in a Boundary Condition, Canadian Mathematical Society Proceedings 8, 171-186 (1987) MR 909908
  • [22] H. Steinrück, Singularly perturbed eigenvalue problems, SIAM Journal of Applied Mathematics 47, 1131-1149 (1987) MR 916232
  • [23] P. Binding and Q. Ye, Variational principles without definiteness conditions, SIAM Journal of Mathematical Analysis 22, 1575-1583 (1991) MR 1129400
  • [24] L. Rodman, An Introduction to Operator Polynomials, Birkhäuser-Verlag, Boston, Massachusetts, 1989 MR 997092
  • [25] G. V. Radzievskii, A problem of completeness of root vectors in the spectral theory of operator-functions, Uspechi of Mathematical Sciences 37, 81-145 (1982) (in Russian) MR 650759
  • [26] L. Greenberg and I. Babuska, A continuous analogue of Sturm sequences in the context of Sturm-Liouville equations, SIAM Journal of Numerical Analysis 26, 920-945 (1989) MR 1005517
  • [27] L. Greenberg, An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues, SIAM Journal of Mathematical Analysis 22, 1021-1042 (1991) MR 1112064
  • [28] A. G. Kostyuchenko and A. A. Shkalikov, Self-adjoint quadratic operator pencils and elliptic problems, Functional Analysis and its Applications 17, 109-128 (1983)
  • [29] A. G. Kostyuchenko and A. A. Shkalikov, On the theory of self-adjoint quadratic operator polynomials, Vestnik Moscov. University Series 1. Mathematics, Mechanics, No. 6, 1983, pp. 40-51 (in Russian)
  • [30] G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne, H. H. West, and M. P. Coleman, Analysis, design and behavior of dissipative joints for coupled beams, SIAM Journal of Applied Mathematics 49, 1665-1693 (1989) MR 1025953
  • [31] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, New York, 1985 MR 768926
  • [32] I. Stakgold, Boundary Value Problems of Mathematical Physics, Volume II, Macmillan Co., New York, New York, 1971 MR 0243183
  • [33] H. J. Ahn, Vibrations of a pendulum consisting of a bob suspended from a wire, Quart. Appl. Math. 39, 109-117 (1981) MR 613954
  • [34] H. J. Ahn, On random transverse vibrations of a rotating beam with tip mass, Quart. Appl. Math. 39, 97-109 (1981)
  • [35] L. H. Jones, The transverse vibration of a rotating beam with tip mass, Quart. Appl. Math. 23, 193-203 (1975)
  • [36] J. A. Burns and E. M. Cliff, An approximation technique for the control and identification of the hybrid system, in Dynamics and Control of Large Flexible Space Structures, Meirovich, Virginia Tech, Blacksburg, VA, 1981, pp. 269-284
  • [37] F. Riesz and B. St. Nagy, Lectures in Functional Analysis, Ungar, New York, New York, 1955
  • [38] W. Schmeidler, Linear Operators in Hilbert Space, Academic Press, New York, New York, 1965 MR 0182881
  • [39] R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, Journal of Applied Mechanics 18, A31-A38 (1951)
  • [40] Z. Schuss, Theory and Applications of Stochastic Differential Equations, 1980 MR 595164
  • [41] P. A. Laura, J. A. Reyes, and R. E. Rossi, Dynamic behavior of a cable-payload system suddenly stopped at one end, Journal of Sound and Vibration 34, 81-95 (1989)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34B24, 34L10, 34L15, 73D30, 73K05

Retrieve articles in all journals with MSC: 34B24, 34L10, 34L15, 73D30, 73K05


Additional Information

DOI: https://doi.org/10.1090/qam/1637056
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society