Eigenoscillations of mechanical systems with boundary conditions containing the frequency

Authors:
B. P. Belinskiy and J. P. Dauer

Journal:
Quart. Appl. Math. **56** (1998), 521-541

MSC:
Primary 34B24; Secondary 34L10, 34L15, 73D30, 73K05

DOI:
https://doi.org/10.1090/qam/1637056

MathSciNet review:
MR1637056

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of eigenoscillations of beam-mass systems is investigated and four examples are developed. For such systems the corresponding Sturm-Liouville problems contain the eigenvalue parameter in the boundary conditions. It is shown that the eigenfunctions for the systems considered form a basis of the appropriate Hilbert space. Rayleigh-Ritz formulas are also developed. Some lower bound estimations for eigenfrequencies are also found.

**[1]**J. P. Keener,*Principles of Applied Mathematics: Transformation and Approximation*, Addison-Wesley Publishing Company, Redwood City, California, 1988 MR**943623****[2]**E. A. Bambill and P. A. A. Laura,*Application of the Rayleigh-Schmidt method when the boundary conditions contain the eigenvalues of the problem*, Journal of Sound and Vibration**130**, 167-170 (1989)**[3]**S.-P. Cheng and N. C. Perkins,*Free vibration of a sagged cable supporting a discrete mass*, Journal of the Acoustical Society of America**91**, 2654-2662 (1992)**[4]**M. J. Maurizi and P. M. Bellés,*An additional evaluation of free vibrations of beam-mass systems*, Journal of Sound and Vibration**154**, 182-186 (1992)**[5]**H. Abramovich and O. Hamburger,*Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass*, Journal of Sound and Vibration**154**, 67-80 (1992)**[6]**O. A. Ladyzhenskaia,*The Boundary Value Problems of Mathematical Physics*, Springer-Verlag, New York, New York, 1985 MR**793735****[7]**D. Gilbarg and N. S,. Trudinger,*Elliptic Partial Differential Equations of Second Order*, 2nd edition, Springer-Verlag, Berlin, 1983 MR**737190****[8]**E. Zeidler,*Nonlinear Functional Analysis and its Applications, Part II/A, Linear Monotone Operators*, Springer-Verlag, New York, New York, 1990 MR**1033497****[9]**M. V. Keldysh,*On the characteristic values and characteristic functions of a certain class of non-selfadjoint equations*, Dokl. Akad. Nauk SSSR**77**, 11-14 (1951) (in Russian) MR**0041353****[10]**I. C. Gohberg and M. G. Krein,*Introduction to the Theory of Linear Non-Selfadjoint Operators*, Translation of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, Rhode Island, 1969 MR**0246142****[11]**C. T. Fulton,*Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions*, Proceedings of the Royal Society of Edinburg**87A**, 1-34 (1980) MR**600446****[12]**C. T. Fulton,*Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions*, Proceedings of the Royal Society of Edinburg**77A**, 293-308 (1977) MR**0593172****[13]**E. C. Titchmarsh,*Eigenfunction Expansions Associated with Second Order Differential Equations*, I, 2nd edition, University Press, Oxford, London, 1962 MR**0176151****[14]**R. E. Langer,*A problem in diffusion or in the flow of heat for a solid in contact with a fluid*, Tôhoku Mathematics Journal**35**, 360-375 (1932)**[15]**B. Friedman,*Principles and Techniques of Applied Mathematics*, John Wiley and Sons, New York, New York, 1956 MR**0079181****[16]**J. Walter,*Regular eigenvalue problems with eigenvalue parameter in the boundary conditions*, Math. Zeitschrift**133**, 301-312 (1973) MR**0335935****[17]**Yu. I. Bobrovnitskii,*On oscillations of some mechanical systems with nonorthogonal eigenfunctions*, Acoustic Dynamics of Machines and Constructions ``Nauk", Moscow, Russia, 1973, pp. 6-9 (in Russian)**[18]**D. B. Hinton,*An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition*, Quarterly Journal of Mathematics, Oxford, Vol.**2**, 33-42 (1979) MR**528889****[19]**D. B. Hinton,*Eigenfunction expansions for a singular eigenvalue problem with eigenvalue parameter in the boundary condition*, SIAM Journal of Mathematical Analysis**12**, 572-584 (1981) MR**617716****[20]**D. B. Hinton and J. K. Shaw,*Differential Operators with Spectral Parameter Incompletely in the Boundary Conditions*, Funkcialaj Ekvacioj (Serio Internacia), Vol. 33, 1990, pp. 363-385 MR**1086767****[21]**D. B. Hinton and J. K. Shaw,*Spectrum of a Hamiltonian System with Spectral Parameter in a Boundary Condition*, Canadian Mathematical Society Proceedings**8**, 171-186 (1987) MR**909908****[22]**H. Steinrück,*Singularly perturbed eigenvalue problems*, SIAM Journal of Applied Mathematics**47**, 1131-1149 (1987) MR**916232****[23]**P. Binding and Q. Ye,*Variational principles without definiteness conditions*, SIAM Journal of Mathematical Analysis**22**, 1575-1583 (1991) MR**1129400****[24]**L. Rodman,*An Introduction to Operator Polynomials*, Birkhäuser-Verlag, Boston, Massachusetts, 1989 MR**997092****[25]**G. V. Radzievskii,*A problem of completeness of root vectors in the spectral theory of operator-functions*, Uspechi of Mathematical Sciences**37**, 81-145 (1982) (in Russian) MR**650759****[26]**L. Greenberg and I. Babuska,*A continuous analogue of Sturm sequences in the context of Sturm-Liouville equations*, SIAM Journal of Numerical Analysis**26**, 920-945 (1989) MR**1005517****[27]**L. Greenberg,*An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues*, SIAM Journal of Mathematical Analysis**22**, 1021-1042 (1991) MR**1112064****[28]**A. G. Kostyuchenko and A. A. Shkalikov,*Self-adjoint quadratic operator pencils and elliptic problems*, Functional Analysis and its Applications**17**, 109-128 (1983)**[29]**A. G. Kostyuchenko and A. A. Shkalikov,*On the theory of self-adjoint quadratic operator polynomials*, Vestnik Moscov. University Series 1. Mathematics, Mechanics, No. 6, 1983, pp. 40-51 (in Russian)**[30]**G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne, H. H. West, and M. P. Coleman,*Analysis, design and behavior of dissipative joints for coupled beams*, SIAM Journal of Applied Mathematics**49**, 1665-1693 (1989) MR**1025953****[31]**J. B. Conway,*A Course in Functional Analysis*, Springer-Verlag, New York, New York, 1985 MR**768926****[32]**I. Stakgold,*Boundary Value Problems of Mathematical Physics, Volume II*, Macmillan Co., New York, New York, 1971 MR**0243183****[33]**H. J. Ahn,*Vibrations of a pendulum consisting of a bob suspended from a wire*, Quart. Appl. Math.**39**, 109-117 (1981) MR**613954****[34]**H. J. Ahn,*On random transverse vibrations of a rotating beam with tip mass*, Quart. Appl. Math.**39**, 97-109 (1981)**[35]**L. H. Jones,*The transverse vibration of a rotating beam with tip mass*, Quart. Appl. Math.**23**, 193-203 (1975)**[36]**J. A. Burns and E. M. Cliff,*An approximation technique for the control and identification of the hybrid system*, in*Dynamics and Control of Large Flexible Space Structures*, Meirovich, Virginia Tech, Blacksburg, VA, 1981, pp. 269-284**[37]**F. Riesz and B. St. Nagy,*Lectures in Functional Analysis*, Ungar, New York, New York, 1955**[38]**W. Schmeidler,*Linear Operators in Hilbert Space*, Academic Press, New York, New York, 1965 MR**0182881****[39]**R. D. Mindlin,*Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates*, Journal of Applied Mechanics**18**, A31-A38 (1951)**[40]**Z. Schuss,*Theory and Applications of Stochastic Differential Equations*, 1980 MR**595164****[41]**P. A. Laura, J. A. Reyes, and R. E. Rossi,*Dynamic behavior of a cable-payload system suddenly stopped at one end*, Journal of Sound and Vibration**34**, 81-95 (1989)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34B24,
34L10,
34L15,
73D30,
73K05

Retrieve articles in all journals with MSC: 34B24, 34L10, 34L15, 73D30, 73K05

Additional Information

DOI:
https://doi.org/10.1090/qam/1637056

Article copyright:
© Copyright 1998
American Mathematical Society