Eigenoscillations of mechanical systems with boundary conditions containing the frequency

Authors:
B. P. Belinskiy and J. P. Dauer

Journal:
Quart. Appl. Math. **56** (1998), 521-541

MSC:
Primary 34B24; Secondary 34L10, 34L15, 73D30, 73K05

DOI:
https://doi.org/10.1090/qam/1637056

MathSciNet review:
MR1637056

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of eigenoscillations of beam-mass systems is investigated and four examples are developed. For such systems the corresponding Sturm-Liouville problems contain the eigenvalue parameter in the boundary conditions. It is shown that the eigenfunctions for the systems considered form a basis of the appropriate Hilbert space. Rayleigh-Ritz formulas are also developed. Some lower bound estimations for eigenfrequencies are also found.

**[1]**James P. Keener,*Principles of applied mathematics*, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1988. Transformation and approximation. MR**943623****[2]**E. A. Bambill and P. A. A. Laura,*Application of the Rayleigh-Schmidt method when the boundary conditions contain the eigenvalues of the problem*, Journal of Sound and Vibration**130**, 167-170 (1989)**[3]**S.-P. Cheng and N. C. Perkins,*Free vibration of a sagged cable supporting a discrete mass*, Journal of the Acoustical Society of America**91**, 2654-2662 (1992)**[4]**M. J. Maurizi and P. M. Bellés,*An additional evaluation of free vibrations of beam-mass systems*, Journal of Sound and Vibration**154**, 182-186 (1992)**[5]**H. Abramovich and O. Hamburger,*Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass*, Journal of Sound and Vibration**154**, 67-80 (1992)**[6]**O. A. Ladyzhenskaya,*The boundary value problems of mathematical physics*, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. MR**793735****[7]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[8]**Eberhard Zeidler,*Nonlinear functional analysis and its applications. II/A*, Springer-Verlag, New York, 1990. Linear monotone operators; Translated from the German by the author and Leo F. Boron. MR**1033497****[9]**M. V. Keldyš,*On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations*, Doklady Akad. Nauk SSSR (N.S.)**77**(1951), 11–14 (Russian). MR**0041353****[10]**I. C. Gohberg and M. G. Kreĭn,*Introduction to the theory of linear nonselfadjoint operators*, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR**0246142****[11]**Charles T. Fulton,*Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions*, Proc. Roy. Soc. Edinburgh Sect. A**87**(1980/81), no. 1-2, 1–34. MR**600446**, https://doi.org/10.1017/S0308210500012312**[12]**Charles T. Fulton,*Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions*, Proc. Roy. Soc. Edinburgh Sect. A**77**(1977), no. 3-4, 293–308. MR**0593172**, https://doi.org/10.1017/S030821050002521X**[13]**E. C. Titchmarsh,*Eigenfunction expansions associated with second-order differential equations. Part I*, Second Edition, Clarendon Press, Oxford, 1962. MR**0176151****[14]**R. E. Langer,*A problem in diffusion or in the flow of heat for a solid in contact with a fluid*, Tôhoku Mathematics Journal**35**, 360-375 (1932)**[15]**Bernard Friedman,*Principles and techniques of applied mathematics*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1956. MR**0079181****[16]**Johann Walter,*Regular eigenvalue problems with eigenvalue parameter in the boundary condition*, Math. Z.**133**(1973), 301–312. MR**0335935**, https://doi.org/10.1007/BF01177870**[17]**Yu. I. Bobrovnitskii,*On oscillations of some mechanical systems with nonorthogonal eigenfunctions*, Acoustic Dynamics of Machines and Constructions ``Nauk", Moscow, Russia, 1973, pp. 6-9 (in Russian)**[18]**Don B. Hinton,*An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition*, Quart. J. Math. Oxford Ser. (2)**30**(1979), no. 117, 33–42. MR**528889**, https://doi.org/10.1093/qmath/30.1.33**[19]**Don Hinton,*Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition*, SIAM J. Math. Anal.**12**(1981), no. 4, 572–584. MR**617716**, https://doi.org/10.1137/0512050**[20]**D. B. Hinton and J. K. Shaw,*Differential operators with spectral parameter incompletely in the boundary conditions*, Funkcial. Ekvac.**33**(1990), no. 3, 363–385. MR**1086767****[21]**D. B. Hinton and J. K. Shaw,*Spectrum of a Hamiltonian system with spectral parameter in a boundary condition*, Oscillations, bifurcation and chaos (Toronto, Ont., 1986) CMS Conf. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 171–186. MR**909908****[22]**Herbert Steinrück,*Singularly perturbed eigenvalue problems*, SIAM J. Appl. Math.**47**(1987), no. 6, 1131–1149. MR**916232**, https://doi.org/10.1137/0147076**[23]**Paul Binding and Qiang Ye,*Variational principles without definiteness conditions*, SIAM J. Math. Anal.**22**(1991), no. 6, 1575–1583. MR**1129400**, https://doi.org/10.1137/0522100**[24]**Leiba Rodman,*An introduction to operator polynomials*, Operator Theory: Advances and Applications, vol. 38, Birkhäuser Verlag, Basel, 1989. MR**997092****[25]**G. V. Radzīēvs′kiĭ,*The problem of completeness of root vectors in the spectral theory of operator-valued functions*, Uspekhi Mat. Nauk**37**(1982), no. 2(224), 81–145, 280 (Russian). MR**650759****[26]**L. Greenberg and I. Babuška,*A continuous analogue of Sturm sequences in the context of Sturm-Liouville equations*, SIAM J. Numer. Anal.**26**(1989), no. 4, 920–945. MR**1005517**, https://doi.org/10.1137/0726051**[27]**Leon Greenberg,*An oscillation method for fourth-order, selfadjoint, two-point boundary value problems with nonlinear eigenvalues*, SIAM J. Math. Anal.**22**(1991), no. 4, 1021–1042. MR**1112064**, https://doi.org/10.1137/0522067**[28]**A. G. Kostyuchenko and A. A. Shkalikov,*Self-adjoint quadratic operator pencils and elliptic problems*, Functional Analysis and its Applications**17**, 109-128 (1983)**[29]**A. G. Kostyuchenko and A. A. Shkalikov,*On the theory of self-adjoint quadratic operator polynomials*, Vestnik Moscov. University Series 1. Mathematics, Mechanics, No. 6, 1983, pp. 40-51 (in Russian)**[30]**G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne, H. H. West, and M. P. Coleman,*Analysis, designs, and behavior of dissipative joints for coupled beams*, SIAM J. Appl. Math.**49**(1989), no. 6, 1665–1693. MR**1025953**, https://doi.org/10.1137/0149101**[31]**John B. Conway,*A course in functional analysis*, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR**768926****[32]**Ivar Stakgold,*Boundary value problems of mathematical physics. Vol. II*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1968. MR**0243183****[33]**Hyun J. Ahn,*Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations*, Quart. Appl. Math.**39**(1981/82), no. 1, 109–117. MR**613954**, https://doi.org/10.1090/S0033-569X-1981-0613954-4**[34]**H. J. Ahn,*On random transverse vibrations of a rotating beam with tip mass*, Quart. Appl. Math.**39**, 97-109 (1981)**[35]**L. H. Jones,*The transverse vibration of a rotating beam with tip mass*, Quart. Appl. Math.**23**, 193-203 (1975)**[36]**J. A. Burns and E. M. Cliff,*An approximation technique for the control and identification of the hybrid system*, in*Dynamics and Control of Large Flexible Space Structures*, Meirovich, Virginia Tech, Blacksburg, VA, 1981, pp. 269-284**[37]**F. Riesz and B. St. Nagy,*Lectures in Functional Analysis*, Ungar, New York, New York, 1955**[38]**Werner Schmeidler,*Linear operators in Hilbert space*, Translation by Jay Strum. Revised and edited by A. Shenitzer and D. Sol itar, Academic Press, New York-London, 1965. MR**0182881****[39]**R. D. Mindlin,*Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates*, Journal of Applied Mechanics**18**, A31-A38 (1951)**[40]**Zeev Schuss,*Theory and applications of stochastic differential equations*, John Wiley & Sons, Inc., New York, 1980. Wiley Series in Probability and Statistics. MR**595164****[41]**P. A. Laura, J. A. Reyes, and R. E. Rossi,*Dynamic behavior of a cable-payload system suddenly stopped at one end*, Journal of Sound and Vibration**34**, 81-95 (1989)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34B24,
34L10,
34L15,
73D30,
73K05

Retrieve articles in all journals with MSC: 34B24, 34L10, 34L15, 73D30, 73K05

Additional Information

DOI:
https://doi.org/10.1090/qam/1637056

Article copyright:
© Copyright 1998
American Mathematical Society