Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

New perspectives in turbulence


Author: Alexandre J. Chorin
Journal: Quart. Appl. Math. 56 (1998), 767-785
MSC: Primary 76F02; Secondary 76M55
DOI: https://doi.org/10.1090/qam/1668737
MathSciNet review: MR1668737
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An analysis of the mean velocity profile in the intermediate region of wall-bounded turbulence shows that the well-known von Kármán-Prandtl logarithmic law of the wall must be jettisoned in favor of a power law. An analogous analysis of the local structure of turbulence shows that the Kolmogorov-Obukhov scaling of the second and third structure functions is exact in the limit of vanishing viscosity while, in the same limit, higher-order moments fail to exist. These results rely on advanced similarity methods and on vanishing-viscosity asymptotics, and are consistent with a near-equilibrium theory of turbulence of which a new version is presented.


References [Enhancements On Off] (What's this?)

  • [1] G. I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics, Consultants Bureau, NY, 1979; Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Texts in Applied Mathematics, vol. 14, Cambridge University Press, Cambridge, 1996 MR 1426127
  • [2] G. I. Barenblatt, On the scaling laws (incomplete self-similarity with respect to Reynolds number) in the developed turbulent flow in pipes, C. R. Acad. Sci. Paris, series II, 313, 3.9-3.12 (1991)
  • [3] G. I. Barenblatt, Scaling laws for fully developed turbulent shear flows. Part 1: Basic hypotheses and analysis, J. Fluid Mech. 248, 513-520 (1993)
  • [4] G. I. Barenblatt and A. J. Chorin, Small viscosity asymptotics for the inertial range of local structure and for the wall region of wall-bounded turbulence, Proc. Nat. Acad. Sciences USA 93, 6749-6752 (1996)
  • [5] G. I. Barenblatt and A. J. Chorin, Scaling laws and vanishing-viscosity limits for wall-bounded shear flows and for local structure in developed turbulence, Comm. Pure Appl. Math. 50, 381-398 (1997) MR 1438152
  • [6] G. I. Barenblatt and A. J. Chorin, Scaling laws and vanishing viscosity limits in turbulence theory, Proc. Venice Conf. in honor of P. Lax and L. Nirenberg, Proc. Sympos. Appl. Math., Vol. 54, Amer. Math. Soc., Providence, RI, 1998, pp. 1-25 MR 1492690
  • [7] G. I. Barenblatt and A. J. Chorin, New perspectives in turbulence: Scaling laws, asymptotics and intermittency, SIAM Rev. 40, 265-291 (1998) MR 1624102
  • [8] G. I. Barenblatt and A. J. Chorin, A near-equilibrium statistical theory of turbulence with applications, in preparation, 1998
  • [9] G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, Scaling laws in fully developed turbulent pipe flow: Discussion of experimental data, Proc. Nat. Acad. Sciences USA 94a, 773-776 (1997)
  • [10] G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, Scaling laws in fully developed turbulent pipe flow, Appl. Mech. Rev. 50, 413-429 (1997)
  • [11] G. I. Barenblatt, A. J. Chorin, O. H. Hald, and V. M. Prostokishin, Structure of the zero-pressure-gradient turbulent boundary layer, Proc. Nat. Acad. Sciences USA 94, 7817-7819 (1997)
  • [12] G. I. Barenblatt and V. M. Prostokishin, Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data, J. Fluid Mech. 248, 521-529 (1993) MR 1209047
  • [13] R. Benzi, C. Ciliberto, C. Baudet, and G. Ruiz Chavarria, On the scaling of three dimensional homogeneous and isotropic turbulence, Physica D 80, 385-398 (1995) MR 1312600
  • [14] A. J. Chorin, Theories of turbulence, in Berkeley Turbulence Seminar, edited by P. Bernard and T. Ratiu, Springer, NY, 1977 MR 920830
  • [15] A. J. Chorin, Vorticity and Turbulence, Springer, NY, 1994 MR 1281384
  • [16] A. J. Chorin, Turbulence as a near-equilibrium process, Lectures in Appl. Math. 31, 235-248 (1996) MR 1363031
  • [17] A. J. Chorin, Turbulence cascades across equilibrium spectra, Phys. Rev. E 54, 2615-2619 (1996)
  • [18] H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, Applications to Physical Systems, part 2, Addison-Wesley, Reading, MA, 1988
  • [19] P. Kailasnath, A. Migdal, K. Sreenivasan, V. Yakhot, and L. Zubair, The 5/4 Kolmogorov law and odd moments of the velocity difference in turbulence, unpublished, 1992
  • [20] Th. von Kármán, Mechanische Aehnlichkeit und Turbulenz, Nach. Ges. Wiss. Goettingen Math-Phys. Klasse, 1932, pp. 58-76
  • [21] A. N. Kolmogorov, Local structure of turbulence in incompressible fluid at a very high Reynolds number, Dokl. Acad. Sci. USSR 30, 299-302 (1941)
  • [22] R. Kupferman and A. J. Chorin, Numerical study of the Kosterlitz-Thouless phase transition, submitted for publication, 1997
  • [23] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, New York, 1959 MR 0108121
  • [24] J. Miller, Statistical mechanics of the Euler equation in two dimensions, Phys. Rev. Lett. 65, 2137-2141 (1990) MR 1074119
  • [25] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 1, MIT Press, Boston, 1971
  • [26] J. Nikuradze, Gesetzmaessigkeiten der turbulenten Stroemung in glatten Rohren, VDI Forschungheft, No. 3.8, 1932
  • [27] A. M. Obukhov, Spectral energy distribution in turbulent flow, Dokl. Akad. Nauk USSR 1, 22-24 (1941)
  • [28] L. Prandtl, Zur turbulenten Stroemung in Rohren und laengs Platten, Ergeb. Aerodyn. Versuch., Series 4, Goettingen, 1932
  • [29] A. Praskovsky and S. Oncley, Measurements of the Kolmogorov constant and intermittency exponents at very high Reynolds numbers, Phys. Fluids A 7, 2778-2784 (1994)
  • [30] H. Schlichting, Boundary Layer Theory, McGraw-Hill, NY, second edition, 1968 MR 0076530
  • [31] K. R. Sreenivasan, On the universality of the Kolmogorov constant, Phys. Fluids A 7, 2778-2784 (1995) MR 1361356
  • [32] H. Tennekes and J. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Mass., 1990
  • [33] H. Weber and P. Minnhagen, Monte-Carlo determination of the critical temperature for the two-dimensional XY model, Phys. Rev. B 37, 5986-5989 (1988)
  • [34] M. V. Zagarola, A. J. Smits, S. A. Orszag, and V. Yakhot, Experiments in high Reynolds number turbulent pipe flow, AIAA paper 96-0654, Reno, Nevada, 1996

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76F02, 76M55

Retrieve articles in all journals with MSC: 76F02, 76M55


Additional Information

DOI: https://doi.org/10.1090/qam/1668737
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society