Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

A monotone approximation for the nonautonomous size-structured population model


Authors: Azmy S. Ackleh and Keng Deng
Journal: Quart. Appl. Math. 57 (1999), 261-267
MSC: Primary 35Q80; Secondary 35L45, 65M12, 92D25
DOI: https://doi.org/10.1090/qam/1686189
MathSciNet review: MR1686189
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we develop a monotone approximation method, based on an upper and lower solutions technique, for solving the nonautonomous size-structured model. Such a technique results in the existence and uniqueness of solutions for this equation. Furthermore, we establish a first-order convergence of the method and present a numerical example.


References [Enhancements On Off] (What's this?)

  • [1] H. T. Banks and F. Kappel, Transformation semigroups and 𝐿¹-approximation for size structured population models, Semigroup Forum 38 (1989), no. 2, 141–155. Semigroups and differential operators (Oberwolfach, 1988). MR 976199, https://doi.org/10.1007/BF02573227
  • [2] H. T. Banks, F. Kappel, and C. Wang, Weak solutions and differentiability for size structured population models, Estimation and control of distributed parameter systems (Vorau, 1990) Internat. Ser. Numer. Math., vol. 100, Birkhäuser, Basel, 1991, pp. 35–50. MR 1155635, https://doi.org/10.1007/978-3-0348-6418-3_2
  • [3] R. Courant and D. Hilbert, Methods of Mathematics Physics, vol. II, New York, Wiley, 1962
  • [4] D. L. DeAngelis and M. A. Huston, Effects of growth rates in models of size distribution formation in plants and animals, Ecologia Modeling 36, 119-137 (1987)
  • [5] D. L. DeAngelis and J. S. Mattice, Implications of a partial differential equation cohort model, Math. Biosci. 47, 271-285 (1979)
  • [6] A. M. de Roos, Numerical methods for structured population models: the escalator boxcar train, Numer. Methods Partial Differential Equations 4 (1988), no. 3, 173–195. MR 1012479, https://doi.org/10.1002/num.1690040303
    A. M. de Roos, Errata: “Numerical methods for structured population models: the escalator boxcar train”, Numer. Methods Partial Differential Equations 5 (1989), no. 2, 169. MR 1012237
  • [7] K. Ito, F. Kappel, and G. Peichl, A fully discretized approximation scheme for size-structured population models, SIAM J. Numer. Anal. 28 (1991), no. 4, 923–954. MR 1111447, https://doi.org/10.1137/0728050
  • [8] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, vol. 27, Pitman (Advanced Publishing Program), Boston, MA; distributed by John Wiley & Sons, Inc., New York, 1985. MR 855240
  • [9] J. W. Sinko and W. Streifer, A new model for age-size structure for a population, Ecology 48, 910-918 (1967)
  • [10] John VanSickle, Analysis of a distributed-parameter population model based on physiological age, J. Theoret. Biol. 64 (1977), no. 3, 571–586. MR 0496860, https://doi.org/10.1016/0022-5193(77)90289-2

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q80, 35L45, 65M12, 92D25

Retrieve articles in all journals with MSC: 35Q80, 35L45, 65M12, 92D25


Additional Information

DOI: https://doi.org/10.1090/qam/1686189
Article copyright: © Copyright 1999 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website