Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors


Authors: Ingenuin Gasser and Roberto Natalini
Journal: Quart. Appl. Math. 57 (1999), 269-282
MSC: Primary 82D37; Secondary 35Q99, 78A35, 82C22
DOI: https://doi.org/10.1090/qam/1686190
MathSciNet review: MR1686190
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two relaxation limits of the hydrodynamic model for semiconductors are investigated. Using the compensated compactness tools we show the convergence of (scaled) entropy solutions of the hydrodynamic model to the solutions of the energy transport and the drift-diffusion equations, according respectively to different time scales.


References [Enhancements On Off] (What's this?)

  • [Al] G. Ali', Asymptotic fluid dynamic models for semiconductors, Quaderno n. 25/1995 IAC-CNR, Roma, 1995
  • [An] A. M. Anile, An extended thermodynamic framework for the hydrodynamic modeling of semiconductors, in Mathematical Problems in Semiconductor Physics, P. Marcati et al. eds., Pitman Research Notes in Mathematics Series 340, Longman, 1995, pp. 3-41 MR 1475931
  • [AMN] G. Ali', P. Marcati, and R. Natalini, Hydrodynamic models for semiconductors, Proceedings of the ICIAM 95, Hamburg, 1995, Zeitschrift für angewandte Mathematik und Mechanics 76, supp 2, 1996, pp. 301-304
  • [B] K. Bløtekjær, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron. Devices ED-17, 1970, pp. 38-47
  • [BD] N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys. 37, 7, 3306-3333 (1996) MR 1401227
  • [BDG] N. Ben Abdallah, P. Degond, and S. Genieys, An energy-transport model for semiconductors derived from the Boltzmann equation, J. Statist. Phys. 84, 205-231 (1996) MR 1401255
  • [BW] G. Baccarani and M. R. Wordeman, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid State Electr. 28, 407-416 (1985)
  • [CP] G. Crasta and B. Piccoli, Viscosity solutions and uniqueness for systems of inhomogeneous balance laws, Discrete Continuous Dynamical Systems 3 (1997), 477-502 MR 1465122
  • [Da1] C. M. Dafermos, Hyperbolic conservation laws with memory, Differential Equations (Xanthi, 1987), Lecture Notes in Pure and Appl. Math. 118, Dekker, New York, 1989, pp. 157-166 MR 1021711
  • [Da2] C. M. Dafermos, A system of hyperbolic conservation laws with frictional damping, Z. Angew. Math. Phys. (ZAMP) 46, Special Issue, 1995, pp. 294-307 MR 1359325
  • [DH] C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J. 31, 471-491 (1982) MR 662914
  • [De] P. Degond, Macroscopic models of charged particle transport derived from kinetic theory, ICIAM 95 (Hamburg, 1995), Math. Res. 87, Akademie Verlag, Berlin, 1996, pp. 39-53 MR 1387599
  • [Di] R. Di Perna, Convergence of approximate solutions of conservation laws, Arch. Rat. Mech. Anal. 82, 27-70 (1983) MR 684413
  • [DGJ] P. Degond, S. Genieys, and A. Jüngel, An existence and uniqueness result for the stationary energy-transport model in semiconductor theory, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 363-368 MR 1450440
  • [FJO] E. Fatemi, J. Jerome, and S. Osher, Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 10, 1991
  • [Ga] C. L. Gardner, Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device, IEEE Trans. Electron. Devices 38, 392-398 (1991)
  • [G1] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18, 697-715 (1965) MR 0194770
  • [GR] E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996 MR 1410987
  • [GP] F. Poupaud and F. Golse, Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asymptotic Analysis 6, 135-160 (1992) MR 1193108
  • [L] P. D. Lax, Shock waves and entropy, in: Contributions to nonlinear functional analysis, ed. E. Zarantonello, Academic Press, New York, 1971, pp. 603-634 MR 0367471
  • [LNX] T. Luo, R. Natalini, and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., in press MR 1661255
  • [JR] S. Junca and M. Rascle, Relaxation du système d'Euler-Poisson isotherme vers les équations de dérive-diffusion, preprint, Univ. Nice, 1996
  • [MM] P. A. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Diff. Eq. 84, 129-147 (1990) MR 1042662
  • [MMS] P. A. Marcati, A. J. Milani, and P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math. 60, 49-69 (1988) MR 920759
  • [MN1] P. A. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Royal Soc. Edinburgh 28, 115-131 (1995)
  • [MN2] P. A. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129, 129-145 (1995) MR 1328473
  • [MR] P. Marcati and B. Rubino, Hyperbolic-parabolic relaxation theory, in preparation
  • [MP] P. A. Markowich and P. Pietra, A non-isentropic Euler-Poisson model for a collisionless plasma, Math. Methods Appl. Sci. 16, 409-442 (1993) MR 1221036
  • [MRS] P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductors equations, Springer-Verlag, Wien, New York, 1990 MR 1063852
  • [N] R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl. 198, 262-281 (1996) MR 1373540
  • [P] F. Poupaud, Diffusion approximation of the linear semiconductor equation: Analysis of boundary layers, Asymptotic Analysis 4, 293-317 (1991) MR 1127004
  • [PRV] F. Poupaud, M. Rascle, and J.-P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differential Equations 123, 93-121 (1995) MR 1359913
  • [R1] B. Rubino, Porous media flow as the limit of a nonstrictly hyperbolic system of conservation laws, Comm. Partial Differential Equations 21, 1-21 (1996) MR 1373762
  • [R2] B. Rubino, Weak solutions to quasilinear wave equations of Klein-Gordon or sine-Gordon type and relaxation to reaction-diffusion equations, NoDEA Nonlinear Differential Equations Appl. 4, 439-457 (1997) MR 1485731
  • [S] D. Serre, Systèmes de lois de conservation, I, Diderot, Paris, 1996 MR 1459988
  • [T] L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, ed. R. J. Knops, New York, Pitman Press, 1979, pp. 136-212 MR 584398

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 82D37, 35Q99, 78A35, 82C22

Retrieve articles in all journals with MSC: 82D37, 35Q99, 78A35, 82C22


Additional Information

DOI: https://doi.org/10.1090/qam/1686190
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society