Long time uniform stability for solutions of -dimensional Navier-Stokes equations

Author:
Linghai Zhang

Journal:
Quart. Appl. Math. **57** (1999), 283-315

MSC:
Primary 35Q30; Secondary 35B40, 76D05, 76E99

DOI:
https://doi.org/10.1090/qam/1686191

MathSciNet review:
MR1686191

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[CF]**P. Constantin and C. Fefferman,*Direction of vorticity and the problem of global regularity for the Navier-Stokes equations*, Indiana University Mathematics Journal**42**, 775-789 (1993) MR**1254117****[GZ]**B. Guo and L. Zhang,*Decay of solutions to magnetohydrodynamics equations in two space dimensions*, Proceedings of the Royal Society of London Ser. A**449**, 79-91 (1995) MR**1328141****[H]**J. G. Heywood,*The Navier-Stokes equations, on the existence, regularity and decay of solutions*, Indiana University Mathematics Journal**29**, 639-681 (1980) MR**589434****[K]**T. Kato,*Strong -solutions of the Navier-Stokes equations in , with applications to weak solutions*, Math. Z.**187**, 471-480 (1984) MR**760047****[KM]**R. Kajikiya and T. Miyakawa,*On -decay of weak solutions of the Navier-Stokes equations in*, Math. Z.**192**, 135-148 (1986) MR**835398****[P]**R. Pego,*Stability in systems of conservation laws with dissipation*, Lectures in Applied Math.**23**, 345-357 (1986) MR**837685****[PSW]**R. Pego, P. Smereka, and M. I. Weinstein,*Oscillatory instability of traveling waves for a KdV-Burgers equation*, Physica D**67**, 45-65 (1993) MR**1234437****[W]**F. Weissler,*The Navier-Stokes initial value problems in*, Arch. Rational Mech. Analysis**74**, 219-230 (1980) MR**591222****[W1]**M. Wiegner,*Decay results for weak solutions of the Navier-Stokes equations on*, J. London Math. Soc.**35**, 303-313 (1987) MR**881519****[W2]**M. Wiegner,*Decay and stability in for strong solutions of the Cauchy problem for the Navier-Stokes equations*, in ``The Navier-Stokes Equations, Theory and Numerical Methods", edited by J. G. Heywood et al, Springer-Verlag, New York, Lecture Notes in Math.**1431**, 95-99 (1990) MR**1072179****[W3]**M. Wiegner,*Decay of the -norm of solutions of the Navier-Stokes equations in unbounded domains*, Acta Appl. Math.**37**, 215-219 (1994) MR**1308759****[S]**M. Schonbek,*Decay of solutions of parabolic conservation laws*, Comm. Partial Differential Equations**7**, 449-473 (1980) MR**571048****[S1]**M. Schonbek,*decay for weak solutions of the Navier-Stokes equations*, Arch. Rational Mech. Analysis**88**, 209-222 (1985) MR**775190****[S2]**M. Schonbek,*Large time behavior of solutions to the Navier-Stokes equations*, Comm. Partial Differential Equations**11**, 733-763 (1986) MR**837929****[Se]**P. Secchi,*stability for weak solutions of the Navier-Stokes equations in*, Indiana University Mathematics Journal**36**, 685-691 (1987) MR**905619****[Se1]**J. Serrin,*On the interior regularity of weak solutions of the Navier-Stokes equations*, Arch. Rational Mech. Analysis**9**, 187-195 (1962) MR**0136885****[Se2]**J. Serrin,*The initial value problems for the Navier-Stokes equations*, in ``Nonlinear Problems'' (R. E. Langer, ed.), University of Wisconsin Press, Madison, 1963, pp. 69-98 MR**0150444****[St]**E. M. Stein,*Singular integrals and differentiability properties of functions*, Princeton University Press, 1970 MR**0290095****[T]**R. Temam,*Navier-Stokes equations, theory and numerical analysis*, North-Holland, Amsterdam and New York, 1979 MR**603444****[V]**H. Beirao da Veiga,*Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space*, Indiana University Mathematics Journal**36**, 149-166 (1987) MR**876996****[VS]**H. Beirao da Veiga and P. Secchi,*-stability for the strong solutions of the Navier-Stokes equations in the whole space*, Arch. Rational Mech. Anal.**98**, 65-69 (1987) MR**866724****[Z1]**L. Zhang,*Initial value problem for a nonlinear parabolic equation with singular integral-differential term*, Acta Math. Appl. Sinica**8**, 367-376 (1992) MR**1205655****[Z2]**L. Zhang,*Decay estimates for the solutions of some nonlinear evolution equations*, J. Differential Equations**116**, 31-58 (1995) MR**1317702****[Z3]**L. Zhang,*Sharp rate of decay of solutions to*2-*dimensional Navier-Stokes equations*, Comm. Partial Differential Equations**20**, 119-127 (1995) MR**1312702****[Z4]**L. Zhang,*Decay estimates of solutions to the initial value problems for a generalized nonlinear Korteweg-de Vries equation*, Chinese Ann. Math.**16A**, 22-32 (1995) [in Chinese] MR**1338910****[ZG1]**Y. Zhou and B. Guo,*The periodic boundary value problem and the initial value problem for the generalized Korteweg-de Vries systems of higher order*, Acta Math. Sinica**27**, 154-176 (1984) MR**744552****[ZG2]**Y. Zhou and B. Guo,*Initial value problems for a nonlinear singular integral-differential equation of deep water*, in ``Partial Differential Equations", edited by S. S. Chern, Springer-Verlag, New York, Lecture Notes in Math.**1306**, 278-290 (1988) MR**1032786**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q30,
35B40,
76D05,
76E99

Retrieve articles in all journals with MSC: 35Q30, 35B40, 76D05, 76E99

Additional Information

DOI:
https://doi.org/10.1090/qam/1686191

Article copyright:
© Copyright 1999
American Mathematical Society