Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic analysis of the one-dimensional Ginzburg-Landau equations near self-duality


Author: Y. Almog
Journal: Quart. Appl. Math. 57 (1999), 355-367
MSC: Primary 35Q55; Secondary 34B15, 34E20, 82D55
DOI: https://doi.org/10.1090/qam/1686194
MathSciNet review: MR1686194
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that when the Ginzburg-Landau parameter $ k = 1/\sqrt 2$ the one-dimensional Ginzburg-Landau equations exhibit self-duality and may be reduced into a pair of first-order ODE. The present asymptotic analysis initially focuses on infinite samples of superconductors for which $ \left\vert {k - 1/\sqrt 2 } \right\vert \ll 1$. It is shown that when the value of the applied magnetic field at infinity lies between $ k$ and $ 1/\sqrt 2 $ a superconducting solution exists. It is later shown, for arbitrary values of $ k$, that no solution, other than the normal state, can exist for applied magnetic field values that lie outside the above interval.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Berger, Creation and breaking of self-duality symmetry--a modern aspect of calculus of variations, Contemp. Math. 17, Amer. Math. Soc., Providence, RI, 1983, pp. 379-394 MR 706111
  • [2] E. Bogomolnyi, The stability of classical solutions, Sov. Jour. Nucl. Phys. 24, 449-454 (1976) MR 0443719
  • [3] C. Bolley and B. Helffer, Rigorous results on Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field I, Nonlinear Stud. 3, 1-29 (1996) MR 1396033
  • [4] C. Bolley and B. Helffer, Rigorous results on Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field II, Nonlinear Stud. 3, 121-152 (1996) MR 1422817
  • [5] S. J. Chapman, Nucleation of superconductivity in decreasing fields I, EJAM 5, 449-468 (1994) MR 1309734
  • [6] S. J. Chapman, Nucleation of superconductivity in decreasing fields II, EJAM 5, 469-494 (1994) MR 1309734
  • [7] S. J. Chapman, Asymptotic analysis of the Ginzburg-Landau model of superconductivity: reduction to a free boundary model, Quart. Appl. Math. 53, 601-627 (1995) MR 1359498
  • [8] S. J. Chapman, S. D. Howison, J. B. Mcleod, and J. R. Ockendon, Normal/Superconducting transition in Landau-Ginzburg Theory, Proc. Roy. Soc. Edinburgh 119A, 117-124 (1991) MR 1130600
  • [9] A. T. Dorsey, Dynamics of interfaces in superconductors, Ann. Phys. 233, 248-269 (1994)
  • [10] V. A. Ginzburg and L. D. Landau, On the theory of superconductivity, Soviet Phys. JETP 20, 1064-1082 (1950)
  • [11] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Applied Mathematical Sciences, vol. 34, Springer-Verlag, New York, 1981 MR 608029
  • [12] M. H. Millman and J. B. Keller, Perturbation theory of nonlinear boundary value problem, J. Math. Phys. 10, 342-361 (1969) MR 0237867
  • [13] J. D. Murray, Asymptotic Analysis, second edition, Applied Mathematical Sciences, vol. 48, Springer-Verlag, New York, 1984 MR 740864

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q55, 34B15, 34E20, 82D55

Retrieve articles in all journals with MSC: 35Q55, 34B15, 34E20, 82D55


Additional Information

DOI: https://doi.org/10.1090/qam/1686194
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society