Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On a nonlocal dispersive equation modeling particle suspensions


Author: Kevin Zumbrun
Journal: Quart. Appl. Math. 57 (1999), 573-600
MSC: Primary 35L65; Secondary 45K05, 76T99
DOI: https://doi.org/10.1090/qam/1704419
MathSciNet review: MR1704419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a nonlocal, scalar conservation law $ {u_t} + {\left( \left( {K_a} * u \right)u \right)_x} = 0$, modeling sedimentation of particles in a dilute fluid suspension, where $ {K_a}\left( x \right) = {a^{ - 1}}K\left( x/a \right)$ is a symmetric smoothing kernel, and $ \ast$ represents convolution. We show this to be a dispersive regularization of the Hopf equation, $ {u_t} + {\left( {u^2} \right)_x} = 0$, analogous to KdV and certain dispersive difference schemes. Using the smoothing property of convolution and the physical principle of conservation of mass, we establish the global existence of smooth solutions.


References [Enhancements On Off] (What's this?)

  • [1] G. K. Batchelor, Sedimentation in a dilute suspension of spheres, J. Fluid Mech. 52, 245 (1972)
  • [2] C. Beenakker and P. Mazur, Phys. Fluids 28, 3203 (1985)
  • [3] R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math. 43, No. 4, 885-906 (1983) MR 709743
  • [4] S. Childress, Viscous flow past a random array of spheres, J. Chem. Phys. 56, 2527-2539 (1972)
  • [5] J. Goodman and P. Lax, On dispersive difference schemes. I, Comm. Pure Appl. Math. 41 591-613 (1988) MR 948073
  • [6] T. Hou and P. Lax, Dispersive approximations in fluid dynamics, Comm. Pure Appl. Math. 44, No. 1, 1-40 (1991) MR 1077912
  • [7] H. Hasimoto, On the periodic fundamental solutions of the Stokes' equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5, 317-328 (1959) MR 0102285
  • [8] J. Happel and H. Brenner, Slow viscous flow past a sphere in a cylindrical tube, J. Fluid Mech. 4, 195-213 (1958) MR 0094026
  • [9] E. J. Hinch, J. Fluid Mech. 83, 695 (1977)
  • [10] M. Khodja, Thesis, University of Michigan.
  • [11] M. Khodja and K. Zumbrun, Stability of an oscillatory shock arising in fluid suspensions, to appear.
  • [12] P. Lax, Hyperbolic Systems of Conservation Laws, SIAM Reg. Conf. Ser. 77, 1973
  • [13] S. R. Merchant and E. A. Rosauer, Clays Clay Miner 17, 289 (1969)
  • [14] R. W. O'Brien, A method for the calculation of the effective transport properties of suspensions of interacting particles, J. Fluid Mech. 91, 17-39 (1979) MR 532304
  • [15] J. Rubinstein, Evolution equations for stratified dilute suspensions, Phys. Fluids A, vol. 2, No. 1, 3-6 (1990) MR 1030168
  • [16] J. Rubinstein and J. B. Keller, Sedimentation of a dilute suspension, Phys. Fluids A 1, 637-643 (1989) MR 1021642
  • [17] J. Rubinstein and J. B. Keller, Particle distribution functions in suspensions, Phys. Fluids A 1, 1632-1641 (1989) MR 1022607
  • [18] A. S. Sangani and A. Acrivos, J. Multiphase Flow 8, 193 (1982)
  • [19] D. B. Siano, Layered sedimentation in suspensions of monodispersive spherical colloidal particles, J. Colloid. Interface Sci. 68, 111 (1979)
  • [20] G. Strang, Accurate partial difference methods, II. Nonlinear problems, Numer. Math. 6, 37-46 (1964) MR 0166942
  • [21] T. J. Tobias and A. P. Ruotsala, Clays Clay Miner 13, 395 (1966)
  • [22] A. I. Volpert, The spaces BV and quasilinear equations, Math. USSR Sb. 2, 257-267 (1967) MR 0216338
  • [23] A. A. Zick and G. M. Homsy, J. Fluid Mech. 115, 13 (1982)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L65, 45K05, 76T99

Retrieve articles in all journals with MSC: 35L65, 45K05, 76T99


Additional Information

DOI: https://doi.org/10.1090/qam/1704419
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society