Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Conservation laws and symmetrization of the equations of incompressible inviscid fluids

Author: Lubin G. Vulkov
Journal: Quart. Appl. Math. 57 (1999), 549-560
MSC: Primary 35L65; Secondary 76B99
DOI: https://doi.org/10.1090/qam/1704427
MathSciNet review: MR1704427
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Many physical processes are described by conservative quasilinear systems of equations that admit a supplementary independent conservation law. A typical example is the equations of incompressible fluid dynamics. If for basic equations the conservation laws of the momentum and the volume are chosen then the conservation law of the energy is an additional conservation law. In the present paper all conservation laws for incompressible fluid dynamics are derived and the symmetric forms of its equations are obtained. Godunov's method of symmetrization is generalized for the case of an arbitrary quasilinear system of equations.

References [Enhancements On Off] (What's this?)

  • [1] L. I. Judovič, Nonstationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz. 3, No. 6, 1032-1066 (1963); English transl. in USSR Comput. Math. and Math. Phys. 3 (1963)
  • [2] R. Temam, On the Euler equations of an incompressible perfect fluid, J. Functional Analysis 20, No. 1, 32-43 (1975) MR 0430568
  • [3] S. N. Antoncev, A. V. Kažihov, and V. M. Monahov, Boundary Value Problems of Nonhomogeneous Fluid Mechanics, Nauka, Novosibirsk, 1983; English transl., North-Holland, Amsterdam, 1990
  • [4] R. Peyret and T. O. Taylor, Computational Methods in Fluid Flow, Springer, New York, 1982
  • [5] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986 MR 836734
  • [6] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 MR 668703
  • [7] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985 MR 785566
  • [8] P. R. Eiseman and A. P. Stone, Conservation laws of fluid dynamics, a survey, SIAM Review 22 12-27 (1980) MR 554708
  • [9] B. L. Roždestvenskii and N. N. Janenko, Systems of Quasilinear Equations and their Applications to Gas Dynamics, Nauka, Moscow, 1968; English transl. of 2nd ed., Amer. Math. Soc., Providence, RI, 1983 MR 694243
  • [10] D. Serre, Les invariants du premier ordre de l'équation d'Euler en dimension trois, Phys. D 13, 105-136 (1984) MR 775281
  • [11] D. Terentev and J. D. Šmyglevskii, A complete set of equations in divergence form for the electromagnetic dynamics of a perfect gas, Ž. Vyčisl. Mat. i Mat. Fiz. 25, No. 3, 725-737 (1976); English transl. in USSR Comput. Math. and Math. Phys. 16 (1976) MR 0452108
  • [12] L. G. Vulkov,$ ^{1}$ On the conservation laws in magnetohydrodynamics at infinite conductivity, Ž. Vyčisl. 25, No. 7, 1401-1408 (1985); English transl. in USSR Comput. Math. and Math. Phys. 25 (1985) MR 1784808
  • [13] L. G. Vulkov,$ ^{1}$ Conservation laws of the two-dimensional gas dynamics equations in Lagrange variables, Ž. Vyčisl. Mat. i Mat. Fiz. 3, No. 10, 1552-1562 (1991); English transl. in USSR Comput. Math. and Math. Phys. 31 (1991) MR 1145224
  • [14] L. G. Vulkov, Conservation laws in nonlinear elasticity, I. One-dimensional elastodynamics, Quart. Appl. Math. 52 427-438 (1994) MR 1292195
  • [15] L. G. Vulkov, On the conservation laws of the compressible Euler equations, Applicable Analysis 64, No. 3-4, 255-271 (1997) MR 1460082
  • [16] S. K. Godunov, An interesting class of quasilinear systems, DAN SSSR 139, No. 3, 521-523 (1961); English transl. in Soviet Math. Dokl. 2 (1961) MR 0131653
  • [17] A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comp. Phys. 49, 151-169 (1989) MR 694161
  • [18] S. K. Godunov, Symmetric form of the magnetohydrodynamic equations, Čisl. Metody Meh. Šplošnoi Sredy 3, No. 1, 26-34 (1972) (in Russian)
  • [19] A. A. Samarskii and Yu. P. Popov, Difference methods for the solution of problems of gas dynamics, M: Nauka, 1980 (in Russian) MR 619540
  • [20] Yu. I. Shokin, On conservatism of difference schemes of gas dynamics, Lecture Notes in Physics, vol. 264, 1986, pp. 578-583
  • [21] L. G. Vulkov$ ^{1}$, On construction of fully conservative difference schemes of the nonlinear elasticity equations, Ž. Vyčisl. Mat. i Mat. Fiz. 31, No. 9, 1392-1401 (1991); English transl. in USSR Comput. Math. and Math. Phys. 31 (1991) MR 1145208

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L65, 76B99

Retrieve articles in all journals with MSC: 35L65, 76B99

Additional Information

DOI: https://doi.org/10.1090/qam/1704427
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society