Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Matched asymptotic expansion calculation of the equilibrium shape of a hole in a thin liquid film


Author: S. B. G. O'Brien
Journal: Quart. Appl. Math. 57 (1999), 453-464
MSC: Primary 76A20; Secondary 34E05, 76B45, 76M45
DOI: https://doi.org/10.1090/qam/1704451
MathSciNet review: MR1704451
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the occurrence of small axisymmetric pinholes in an otherwise uniform infinite thin liquid film. Corresponding to any particular undisturbed film thickness there exists precisely one (unstable) equilibrium solution reflecting a balance between surface tension and gravity effects. If a pinhole is smaller than this critical size the pinhole tends to close over and ``heal". If a pinhole is larger it tends to open out. So determination of this critical hole size is crucial. We examine this problem in the case of a ``small'' pinhole where the fundamental length-scale in the film is much smaller than the capillary length. Solutions are obtained using matched asymptotic expansions for which several different scalings are necessary.


References [Enhancements On Off] (What's this?)

  • [1] Milton Van Dyke, Perturbation methods in fluid mechanics, Applied Mathematics and Mechanics, Vol. 8, Academic Press, New York-London, 1964. MR 0176702
  • [2] S. Hartland and R. W. Hartley, Axisymmetric fluid-liquid interfaces, Elsevier, 1976
  • [3] P. A. Lagerstrom and R. G. Casten, Basic concepts underlying singular perturbation techniques, SIAM Rev. 14 (1972), 63–120. MR 0304801, https://doi.org/10.1137/1014002
  • [4] D. F. James, The meniscus on the outside of a small circular cylinder, J. Fluid Mech. 63, 659-669 (1974)
  • [5] J. Kevorkian and Julian D. Cole, Perturbation methods in applied mathematics, Applied Mathematical Sciences, vol. 34, Springer-Verlag, New York-Berlin, 1981. MR 608029
  • [6] J. H. Lammers and S. B. G. O'Brien, Effects of evaporation during spin-coating, Proceedings of the First European Coating Symposium, Leeds, 1996, pp. 397-405
  • [7] P. S. de Laplace, Mechanique Celestique, Suppl. au X Livre, Coureier, Paris, 1805
  • [8] J. A. Moriarty, L. W. Schwartz, and E. A. Tuck, Unsteady spreading of thin liquid films with small surface tension, J. Colloid Interface Sci. 161, 335-342 (1993)
  • [9] S. B. G. O’Brien, On the shape of small sessile and pendant drops by singular perturbation techniques, J. Fluid Mech. 233 (1991), 519–537. MR 1140089, https://doi.org/10.1017/S0022112091000587
  • [10] S. B. G. O'Brien, Asymptotic solutions for double pendant and extended sessile drops, Quarterly of Applied Mathematics LII, 43-48 (1994)
  • [11] P. J. Slikkerveer, E. P. van Lohuizen, and S. B. G. O'Brien, An implicit surface tension algorithm, Internat. J. Numer. Methods in Fluids 222, 851-865 (1996)
  • [12] G. I. Taylor and D. H. Michael, On making holes in a sheet of fluid, J. Fluid Mech. 58, 625-639 (1973)
  • [13] S. B. G. O'Brien, Asymptotics of a pinhole, J. College Internat. Sci. 191, 514-516 (1997)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76A20, 34E05, 76B45, 76M45

Retrieve articles in all journals with MSC: 76A20, 34E05, 76B45, 76M45


Additional Information

DOI: https://doi.org/10.1090/qam/1704451
Article copyright: © Copyright 1999 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website