Electrodiffusional free boundary problem, in a bipolar membrane (semiconductor diode), at a reverse bias for constant current

Authors:
M. Primicerio, I. Rubinstein and B. Zaltzman

Journal:
Quart. Appl. Math. **57** (1999), 637-659

MSC:
Primary 35R35; Secondary 35Q60, 78A35, 82D37

DOI:
https://doi.org/10.1090/qam/1724297

MathSciNet review:
MR1724297

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A singular perturbation problem, modeling one-dimensional time-dependent electrodiffusion of ions (holes and electrons) in a bipolar membrane (semi-conductor diode) at a reverse bias is analyzed for galvanostatic (fixed electric current) conditions. It is shown that, as the perturbation parameter tends to zero, the solution of the perturbed problem tends to the solution of a limiting problem which is, depending on the input data, either a conventional bipolar electrodiffusion problem or a particular electrodiffusional time-dependent free boundary problem. In both cases, the properties of the limiting solution are analyzed, along with those of the respective boundary and transition layer solutions.

**[1]**I. Rubinstein and B. Zaltzman,*Electrodiffusional free boundary problem in concentration polarization in electrodialysis*, Math. Models Methods Appl. Sci.**6**(1996), no. 5, 623–648. MR**1403724**, https://doi.org/10.1142/S0218202596000250**[2]**Isaak Rubinstein,*Electro-diffusion of ions*, SIAM Studies in Applied Mathematics, vol. 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR**1075016****[3]**R. Simons,*Strong electric field effects on proton transfer between membrane-bound amins and water*, Nature**280**, 824 (1979)**[4]**K. N. Mani, F. P. Chlanda, and C. H. Byszewski,*Aquatech Membrane Technology for Recovery of Acid/Base Values from Salt Streams*, Desalination**68**, 149-166 (1988)**[5]**P. Ramirez, H. J. Rapp, S. Reichle, H. Strathmann, and S. Mafe,*Current-voltage curves of bipolar membranes*, J. Appl. Phys.**72**, 259-263 (1992)**[6]**Franco Brezzi and Lucia Gastaldi,*Mathematical properties of one-dimensional semiconductors*, Mat. Apl. Comput.**5**(1986), no. 2, 123–137 (English, with Portuguese summary). MR**884997****[7]**F. Brezzi, A. C. Capelo, and L. Gastaldi,*A singular perturbation analysis of reverse-biased semi-conductor diodes*, SIAM J. Math. Anal.**20**, 372-387 (1989)**[8]**Luis A. Caffarelli and Avner Friedman,*A singular perturbation problem for semiconductors*, Boll. Un. Mat. Ital. B (7)**1**(1987), no. 2, 409–421 (English, with Italian summary). MR**896332****[9]**Christian Schmeiser,*A singular perturbation analysis of reverse biased 𝑝𝑛-junctions*, SIAM J. Math. Anal.**21**(1990), no. 2, 313–326. MR**1038894**, https://doi.org/10.1137/0521017**[10]**S. L. Kamenomostskaya,*On the Stefan problem*, Math. Sb. (N.S.)**53**, 489-514 (1961) (in Russian)**[11]**O. A. Oleĭnik,*A method of solution of the general Stefan problem*, Soviet Math. Dokl.**1**(1960), 1350–1354. MR**0125341**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35R35,
35Q60,
78A35,
82D37

Retrieve articles in all journals with MSC: 35R35, 35Q60, 78A35, 82D37

Additional Information

DOI:
https://doi.org/10.1090/qam/1724297

Article copyright:
© Copyright 1999
American Mathematical Society