Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Exact controllability for problems of transmission of the plate equation with lower-order terms


Authors: Weijiu Liu and Graham H. Williams
Journal: Quart. Appl. Math. 58 (2000), 37-68
MSC: Primary 93B05; Secondary 74K20, 74M05
DOI: https://doi.org/10.1090/qam/1738557
MathSciNet review: MR1738557
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the exact controllability for the problem of transmission of the plate equation with lower-order terms. Using Lions' Hilbert Uniqueness Method (HUM for short), we show that the system is exactly controllable in $ {L^2}\left( \Omega \right) \times {H^{ - 2}}\left( \Omega \right)$. We also obtain some uniqueness theorems for the problem of transmission of the plate equation and for the operator $ a\left( x \right){\Delta ^2} + q$.


References [Enhancements On Off] (What's this?)

  • [1] Nicolas Burq, Contrôle de l’équation des plaques en présence d’obstacles strictement convexes, Mém. Soc. Math. France (N.S.) 55 (1993), 126 (French, with English and French summaries). MR 1254820
  • [2] Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 2, Springer-Verlag, Berlin, 1988. Functional and variational methods; With the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cessenat, Jean Michel Combes, Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily; Translated from the French by Ian N. Sneddon. MR 969367
  • [3] Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075
  • [4] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire, J. Math. Pures Appl. (9) 68 (1989), no. 4, 457–465 (1990) (French, with English summary). MR 1046761
  • [5] Stéphane Jaffard, Contrôle interne exact des vibrations d’une plaque carrée, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 14, 759–762 (French, with English summary). MR 972075
  • [6] V. Komornik, Exact controllability and stabilization, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. The multiplier method. MR 1359765
  • [7] I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case, SIAM J. Control Optim. 27 (1989), no. 2, 330–373. MR 984832, https://doi.org/10.1137/0327018
  • [8] I. Lasiecka and R. Triggiani, Further results on exact controllability of the Euler-Bernoulli equation with controls on the Dirichlet and Neumann boundary conditions, Stabilization of flexible structures (Montpellier, 1989) Lect. Notes Control Inf. Sci., vol. 147, Springer, Berlin, 1990, pp. 226–234. MR 1179444, https://doi.org/10.1007/BFb0005156
  • [9] G. Lebeau, Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9) 71 (1992), no. 3, 267–291 (French, with English summary). MR 1172452
  • [10] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8, Masson, Paris, 1988 (French). Contrôlabilité exacte. [Exact controllability]; With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. MR 953547
  • [11] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30 (1988), no. 1, 1–68. MR 931277, https://doi.org/10.1137/1030001
  • [12] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. II, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 182. MR 0350178
  • [13] Jacques Simon, Compact sets in the space 𝐿^{𝑝}(0,𝑇;𝐵), Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, https://doi.org/10.1007/BF01762360
  • [14] E. Zuazua, Exact boundary controllability for the semilinear wave equation, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987–1988) Pitman Res. Notes Math. Ser., vol. 220, Longman Sci. Tech., Harlow, 1991, pp. 357–391 (English, with French summary). MR 1131832

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 93B05, 74K20, 74M05

Retrieve articles in all journals with MSC: 93B05, 74K20, 74M05


Additional Information

DOI: https://doi.org/10.1090/qam/1738557
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society