Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Exact controllability for problems of transmission of the plate equation with lower-order terms


Authors: Weijiu Liu and Graham H. Williams
Journal: Quart. Appl. Math. 58 (2000), 37-68
MSC: Primary 93B05; Secondary 74K20, 74M05
DOI: https://doi.org/10.1090/qam/1738557
MathSciNet review: MR1738557
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the exact controllability for the problem of transmission of the plate equation with lower-order terms. Using Lions' Hilbert Uniqueness Method (HUM for short), we show that the system is exactly controllable in $ {L^2}\left( \Omega \right) \times {H^{ - 2}}\left( \Omega \right)$. We also obtain some uniqueness theorems for the problem of transmission of the plate equation and for the operator $ a\left( x \right){\Delta ^2} + q$.


References [Enhancements On Off] (What's this?)

  • [1] N. Burq, Contrôle de l'équation des plaques en présence d' obstacles strictement convexes, Mém. Soc. Math. France (N.S.) 55, 1-126 (1993) MR 1254820
  • [2] R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 2, Functional and Variational Methods, Springer-Verlag, Berlin, 1992 MR 969367
  • [3] R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 5, Evolution Problems I, Springer-Verlag, Berlin, 1992 MR 1156075
  • [4] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures et Appl. 68, 457-465 (1989) MR 1046761
  • [5] S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée, C. R. Acad. Sci. Paris 307, Série I, 759-762 (1988) MR 972075
  • [6] V. Komornik, Exact controllability and stabilization: The multiplier method, John Wiley and Sons, Masson, Paris, 1994 MR 1359765
  • [7] I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: A nonconservative case, SIAM J. Control and Optimization 27, No. 2, 330-373 (1989) MR 984832
  • [8] I. Lasiecka and R. Triggiani, Further results on exact controllability of the Euler-Bernoulli equation with controls on the Dirichlet and Neumann boundary conditions, Stabilization of Flexible Structures (Montpellier, 1989), Lecture Notes in Control and Information Sciences, 147, Springer-Verlag, 1990, pp. 226-234 MR 1179444
  • [9] G. Lebeau, Contrôle de l'équation de Schrödinger, J. Math. Pures et Appl. 71, 267-291 (1992) MR 1172452
  • [10] J. L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité Exacte, Masson, Paris, Milan, Barcelone, Mexico, 1988 MR 953547
  • [11] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review 30, no. 1, 1-68 (1988) MR 931277
  • [12] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vols. I and II, Springer-Verlag, Berlin, Heidelberg, New York, 1972 MR 0350178
  • [13] J. Simon, Compact sets in the space $ {L^{p}}\left( 0, T; B \right)$, Annali di Matematica Pura ed Applicata (IV), Vol. CXLVI, 1987, pp. 65-96 MR 916688
  • [14] E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. X (Paris, 1987-1988) 357-391, Pitman Research Notes in Mathematics Series 220, Longman Science and Technology, Harlow, 1991 (H. O. Fattorini) MR 1131832

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 93B05, 74K20, 74M05

Retrieve articles in all journals with MSC: 93B05, 74K20, 74M05


Additional Information

DOI: https://doi.org/10.1090/qam/1738557
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society