Equisum matrices and their permanence

Authors:
Philip J. Davis and Igor Najfeld

Journal:
Quart. Appl. Math. **58** (2000), 151-169

MSC:
Primary 15A57; Secondary 15A23

DOI:
https://doi.org/10.1090/qam/1739042

MathSciNet review:
MR1739042

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a square equisum matrix, all row and column sums are equal. In a rectangular equisum matrix, the common row sum is a rational multiple of the common column sum. This paper explores properties of equisum matrices, in particular, the preservation of the equisum condition under a variety of linear, nonlinear and pattern-maintaining transformations. A principal tool employed is a representation via the Fourier matrix or the circulant projectors associated with it.

**[1]**Richard Bellman,*Introduction to Matrix Analysis*, McGraw-Hill Book Co., 1970 MR**0258847****[2]**Philip J. Davis,*Circulant Matrices*, Chelsea, 1994**[3]**Emeric Deutsch and Helmut Wielandt,*Nested Bounds for the Perron Root of a Nonnegative Matrix*, Linear Algebra Appl.**52/53**, 235-251 (1983) MR**709353****[4]**John D. Dollard and Charles N. Friedman,*Product Integration*, Addison-Wesley Publ. Co., 1979 MR**552941****[5]**John A. Eisele and Robert M. Mason,*Applied Matrix and Tensor Analysis*, Wiley-Interscience, 1970 MR**0268193****[6]**Frank C. Hoppensteadt,*An Introduction to the Mathematics of Neurons*, second edition, Cambridge University Press, 1997 MR**1473463****[7]**Roger Horn and Charles Johnson,*Matrix Analysis*, Cambridge University Press, 1990 MR**1084815****[8]**Leonid Kachian,*Diagonal Matrix Scaling is NP-Hard*, Linear Algebra Appl.**234**, 173-179 (1996) MR**1368777****[9]**Z. M. Kadas, W. D. Lakin, J. Yu, and P. L. Penar,*A mathematical model of the intracranial system including autoregulation*, Neurological Research**19**, August, 441-450 (1997)**[10]**Peter Lancaster and Miron Tismenetsky,*The Theory of Matrices*, second edition,*Computer Science and Applied Mathematics*, Academic Press, Orlando, FL, 1985 MR**792300****[11]**Jan R. Magnus,*Linear Structures*, Oxford University Press, 1988 MR**947343****[12]**Igor Najfeld and Timothy F. Havel,*Derivatives of the Matrix Exponential and Their Computation*, Adv. Appl. Math.**16**, 321-375 (1995) MR**1342832****[13]**Kenneth S. Williams and Kenneth Hardy,*The Red Book of Mathematical Problems*, Dover Publ., 1996 MR**1425395**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
15A57,
15A23

Retrieve articles in all journals with MSC: 15A57, 15A23

Additional Information

DOI:
https://doi.org/10.1090/qam/1739042

Article copyright:
© Copyright 2000
American Mathematical Society