Periodic orbits in planar systems modelling neural activity

Authors:
Robert E. Kooij and Fotios Giannakopoulos

Journal:
Quart. Appl. Math. **58** (2000), 437-457

MSC:
Primary 92C20; Secondary 34C25, 34C60

DOI:
https://doi.org/10.1090/qam/1770648

MathSciNet review:
MR1770648

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will prove certain properties of a planar dynamical system modelling the neural activity of a network consisting of two neurons. At first we show that for a certain region in parameter space (such that there exist three equilibria) the dynamical system has no periodic orbits. To this end we need a new criterion for the nonexistence of limit cycles in a system of Liénard type (Lemma 3.1). Next we derive conditions under which our model system has exactly one periodic orbit, which will be a stable limit cycle. Finally, we cover a part of the parameter space where we can prove that the dynamical system has three equilibria such that around two of the equilibria at most one limit cycle can exist.

**[1]**Bill Baird,*Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb*, Phys. D**22**(1986), no. 1-3, 150–175. Evolution, games and learning (Los Alamos, N.M., 1985). MR**878158**, https://doi.org/10.1016/0167-2789(86)90238-1**[2]**R. M. Borisyuk and A. B. Kirillov,*Bifurcation analysis of a neural network model*, Biol. Cybern.**66**, 319-325 (1992)**[3]**J. D. Cowan and G. B. Ermentrout,*Some Aspects of the ``Eigenbehavior'' of Neural Nets*, in S. A. Levin:*Studies in Mathematical Biology Part*I:*Cellular Behavior and the Development of Pattern*, Studies in Mathematics, vol. 15, Mathematical Association of America, Washington, DC, 1978, pp. 67-117**[4]**F. Dumortier, R. Roussarie, and J. Sotomayor,*Generic*3-*Parameter Families of Planar Fields, Unfoldings of Saddle, Focus and Elliptic Singularities with Nilpotent Linear Parts*, in F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek:*Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals*, Lecture Notes in Mathematics**1480**, Springer-Verlag, Berlin, 1991**[5]**W. J. Freeman,*Tutorial on neurobiology: From single neurons to brain chaos*, International Journal of Bifurcations and Chaos**2**, 441-482 (1992)**[6]**Fotios Giannakopoulos and Oliver Oster,*Bifurcation properties of a planar system modelling neural activity*, Differential Equations Dynam. Systems**5**(1997), no. 3-4, 229–242. Planar nonlinear dynamical systems (Delft, 1995). MR**1660265****[7]**John Guckenheimer and Philip Holmes,*Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR**709768****[8]**M. W. Hirsch,*Convergent Activation Dynamics in Continuous Time Networks*, Neural Networks**2**, 331-349 (1989)**[9]**Frank C. Hoppensteadt and Eugene M. Izhikevich,*Weakly connected neural networks*, Applied Mathematical Sciences, vol. 126, Springer-Verlag, New York, 1997. MR**1458890****[10]**J. J. Hopfield,*Neural networks and physical systems with emergent collective computational abilities*, Proc. Nat. Acad. Sci. U.S.A.**79**(1982), no. 8, 2554–2558. MR**652033****[11]**Norman Levinson and Oliver K. Smith,*A general equation for relaxation oscillations*, Duke Math. J.**9**(1942), 382–403. MR**0006792****[12]**A. Liénard,*Étude des oscillations entretenues*, Rev. Gen. d'Electricité, XXIII, 1928, pp. 901-946 [in French]**[13]**Robert E. Kooij and Sun Jianhua,*A note on: “Uniqueness of limit cycles in a Liénard-type system” [J. Math. Anal. Appl. 184 (1994), no. 2, 348–359; MR1278394 (95e:34027)] by X. C. Huang and P. T. Sun*, J. Math. Anal. Appl.**208**(1997), no. 1, 260–276. MR**1440356**, https://doi.org/10.1006/jmaa.1997.5284**[14]**J. G. Nicholls, A. R. Martin, and B. G. Wallace,*From neuron to brain*, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA, 1992**[15]**G. Sansone and R. Conti,*Non-linear differential equations*, Revised edition. Translated from the Italian by Ainsley H. Diamond. International Series of Monographs in Pure and Applied Mathematics, Vol. 67, A Pergamon Press Book. The Macmillan Co., New York, 1964. MR**0177153****[16]**G. M. Shepherd,*Neurobiology*, Oxford University Press, New York, 1994**[17]**H. R. Wilson and J. D. Cowan,*Excitatory and inhibitory interactions in localized populations of model neurons*, Biophysical J.**12**, 1-24 (1972)**[18]**Yan Qian Ye, Sui Lin Cai, Lan Sun Chen, Ke Cheng Huang, Ding Jun Luo, Zhi En Ma, Er Nian Wang, Ming Shu Wang, and Xin An Yang,*Theory of limit cycles*, 2nd ed., Translations of Mathematical Monographs, vol. 66, American Mathematical Society, Providence, RI, 1986. Translated from the Chinese by Chi Y. Lo. MR**854278****[19]**Zhang Zhi-fen,*On the uniqueness of limit cycles of certain equations of nonlinear oscillations*, Dokl. Akad. Nauk SSSR**119**, 659-662 (1958) [in Russian]**[20]**Zhi Fen Zhang,*Proof of the uniqueness theorem of limit cycles of generalized Liénard equations*, Appl. Anal.**23**(1986), no. 1-2, 63–76. MR**865184**, https://doi.org/10.1080/00036818608839631**[21]**Zhi Fen Zhang, Tong Ren Ding, Wen Zao Huang, and Zhen Xi Dong,*Qualitative theory of differential equations*, Translations of Mathematical Monographs, vol. 101, American Mathematical Society, Providence, RI, 1992. Translated from the Chinese by Anthony Wing Kwok Leung. MR**1175631**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
92C20,
34C25,
34C60

Retrieve articles in all journals with MSC: 92C20, 34C25, 34C60

Additional Information

DOI:
https://doi.org/10.1090/qam/1770648

Article copyright:
© Copyright 2000
American Mathematical Society