Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Periodic orbits in planar systems modelling neural activity


Authors: Robert E. Kooij and Fotios Giannakopoulos
Journal: Quart. Appl. Math. 58 (2000), 437-457
MSC: Primary 92C20; Secondary 34C25, 34C60
DOI: https://doi.org/10.1090/qam/1770648
MathSciNet review: MR1770648
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will prove certain properties of a planar dynamical system modelling the neural activity of a network consisting of two neurons. At first we show that for a certain region in parameter space (such that there exist three equilibria) the dynamical system has no periodic orbits. To this end we need a new criterion for the nonexistence of limit cycles in a system of Liénard type (Lemma 3.1). Next we derive conditions under which our model system has exactly one periodic orbit, which will be a stable limit cycle. Finally, we cover a part of the parameter space where we can prove that the dynamical system has three equilibria such that around two of the equilibria at most one limit cycle can exist.


References [Enhancements On Off] (What's this?)

  • [1] B. Baird, Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb, Physica 22D, 150-175 (1986) MR 878158
  • [2] R. M. Borisyuk and A. B. Kirillov, Bifurcation analysis of a neural network model, Biol. Cybern. 66, 319-325 (1992)
  • [3] J. D. Cowan and G. B. Ermentrout, Some Aspects of the ``Eigenbehavior'' of Neural Nets, in S. A. Levin: Studies in Mathematical Biology Part I: Cellular Behavior and the Development of Pattern, Studies in Mathematics, vol. 15, Mathematical Association of America, Washington, DC, 1978, pp. 67-117
  • [4] F. Dumortier, R. Roussarie, and J. Sotomayor, Generic 3-Parameter Families of Planar Fields, Unfoldings of Saddle, Focus and Elliptic Singularities with Nilpotent Linear Parts, in F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek: Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals, Lecture Notes in Mathematics 1480, Springer-Verlag, Berlin, 1991
  • [5] W. J. Freeman, Tutorial on neurobiology: From single neurons to brain chaos, International Journal of Bifurcations and Chaos 2, 441-482 (1992)
  • [6] F. Giannakopoulos and O. Oster, Bifurcation properties of a planar system modelling neural activity, Planar Nonlinear Dynamical Systems (Delft, 1995), Differential Equations and Dynamical Systems 5, 229-242 (1997) MR 1660265
  • [7] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983 MR 709768
  • [8] M. W. Hirsch, Convergent Activation Dynamics in Continuous Time Networks, Neural Networks 2, 331-349 (1989)
  • [9] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks, Springer-Verlag, New York, 1997 MR 1458890
  • [10] J. J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proceedings of the National Academy of Sciences, USA 79, 2554-2558 (1982) MR 652033
  • [11] N. Levinson and O. K. Smith, A general equation for relaxation oscillation, Duke Math. Journal 9, 382-403 (1942) MR 0006792
  • [12] A. Liénard, Étude des oscillations entretenues, Rev. Gen. d'Electricité, XXIII, 1928, pp. 901-946 [in French]
  • [13] R. E. Kooij and Sun Jianhua, A note on ``Uniqueness of limit cycles in a Liénard type system", J. Math. Anal. Appl. 208, 260-276 (1997) MR 1440356
  • [14] J. G. Nicholls, A. R. Martin, and B. G. Wallace, From neuron to brain, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA, 1992
  • [15] G. Sansone and R. Conti, Nonlinear Differential Equations, Macmillan, New York, 1964 MR 0177153
  • [16] G. M. Shepherd, Neurobiology, Oxford University Press, New York, 1994
  • [17] H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophysical J. 12, 1-24 (1972)
  • [18] Ye Yan-Qian, Theory of limit cycles, Transl. of Math. Monographs, Vol. 66, Amer. Math. Soc., Providence, Rhode Island, 1986 MR 854278
  • [19] Zhang Zhi-fen, On the uniqueness of limit cycles of certain equations of nonlinear oscillations, Dokl. Akad. Nauk SSSR 119, 659-662 (1958) [in Russian]
  • [20] Zhang Zhi-fen, Proof of the uniqueness theorem of limit cycles of generalized Liénard equations, Appl. Anal. 23, 63-76 (1986) MR 865184
  • [21] Zhang Zhi-fen, Ding Tong-ren, Huang Wen-zao, and Dong Zhen-xi, Qualitative Theory of Differential Equations, Translations of Math. Monographs, Vol. 101, Amer. Math. Soc., Providence, RI, 1992 MR 1175631

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 92C20, 34C25, 34C60

Retrieve articles in all journals with MSC: 92C20, 34C25, 34C60


Additional Information

DOI: https://doi.org/10.1090/qam/1770648
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society