Periodic orbits in planar systems modelling neural activity

Authors:
Robert E. Kooij and Fotios Giannakopoulos

Journal:
Quart. Appl. Math. **58** (2000), 437-457

MSC:
Primary 92C20; Secondary 34C25, 34C60

DOI:
https://doi.org/10.1090/qam/1770648

MathSciNet review:
MR1770648

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will prove certain properties of a planar dynamical system modelling the neural activity of a network consisting of two neurons. At first we show that for a certain region in parameter space (such that there exist three equilibria) the dynamical system has no periodic orbits. To this end we need a new criterion for the nonexistence of limit cycles in a system of Liénard type (Lemma 3.1). Next we derive conditions under which our model system has exactly one periodic orbit, which will be a stable limit cycle. Finally, we cover a part of the parameter space where we can prove that the dynamical system has three equilibria such that around two of the equilibria at most one limit cycle can exist.

**[1]**B. Baird,*Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb*, Physica**22D**, 150-175 (1986) MR**878158****[2]**R. M. Borisyuk and A. B. Kirillov,*Bifurcation analysis of a neural network model*, Biol. Cybern.**66**, 319-325 (1992)**[3]**J. D. Cowan and G. B. Ermentrout,*Some Aspects of the ``Eigenbehavior'' of Neural Nets*, in S. A. Levin:*Studies in Mathematical Biology Part*I:*Cellular Behavior and the Development of Pattern*, Studies in Mathematics, vol. 15, Mathematical Association of America, Washington, DC, 1978, pp. 67-117**[4]**F. Dumortier, R. Roussarie, and J. Sotomayor,*Generic*3-*Parameter Families of Planar Fields, Unfoldings of Saddle, Focus and Elliptic Singularities with Nilpotent Linear Parts*, in F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek:*Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals*, Lecture Notes in Mathematics**1480**, Springer-Verlag, Berlin, 1991**[5]**W. J. Freeman,*Tutorial on neurobiology: From single neurons to brain chaos*, International Journal of Bifurcations and Chaos**2**, 441-482 (1992)**[6]**F. Giannakopoulos and O. Oster,*Bifurcation properties of a planar system modelling neural activity*, Planar Nonlinear Dynamical Systems (Delft, 1995), Differential Equations and Dynamical Systems**5**, 229-242 (1997) MR**1660265****[7]**J. Guckenheimer and P. Holmes,*Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields*, Springer-Verlag, New York, 1983 MR**709768****[8]**M. W. Hirsch,*Convergent Activation Dynamics in Continuous Time Networks*, Neural Networks**2**, 331-349 (1989)**[9]**F. C. Hoppensteadt and E. M. Izhikevich,*Weakly Connected Neural Networks*, Springer-Verlag, New York, 1997 MR**1458890****[10]**J. J. Hopfield,*Neural Networks and Physical Systems with Emergent Collective Computational Abilities*, Proceedings of the National Academy of Sciences, USA**79**, 2554-2558 (1982) MR**652033****[11]**N. Levinson and O. K. Smith,*A general equation for relaxation oscillation*, Duke Math. Journal**9**, 382-403 (1942) MR**0006792****[12]**A. Liénard,*Étude des oscillations entretenues*, Rev. Gen. d'Electricité, XXIII, 1928, pp. 901-946 [in French]**[13]**R. E. Kooij and Sun Jianhua,*A note on ``Uniqueness of limit cycles in a Liénard type system"*, J. Math. Anal. Appl.**208**, 260-276 (1997) MR**1440356****[14]**J. G. Nicholls, A. R. Martin, and B. G. Wallace,*From neuron to brain*, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA, 1992**[15]**G. Sansone and R. Conti,*Nonlinear Differential Equations*, Macmillan, New York, 1964 MR**0177153****[16]**G. M. Shepherd,*Neurobiology*, Oxford University Press, New York, 1994**[17]**H. R. Wilson and J. D. Cowan,*Excitatory and inhibitory interactions in localized populations of model neurons*, Biophysical J.**12**, 1-24 (1972)**[18]**Ye Yan-Qian,*Theory of limit cycles*, Transl. of Math. Monographs, Vol. 66, Amer. Math. Soc., Providence, Rhode Island, 1986 MR**854278****[19]**Zhang Zhi-fen,*On the uniqueness of limit cycles of certain equations of nonlinear oscillations*, Dokl. Akad. Nauk SSSR**119**, 659-662 (1958) [in Russian]**[20]**Zhang Zhi-fen,*Proof of the uniqueness theorem of limit cycles of generalized Liénard equations*, Appl. Anal.**23**, 63-76 (1986) MR**865184****[21]**Zhang Zhi-fen, Ding Tong-ren, Huang Wen-zao, and Dong Zhen-xi,*Qualitative Theory of Differential Equations*, Translations of Math. Monographs, Vol. 101, Amer. Math. Soc., Providence, RI, 1992 MR**1175631**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
92C20,
34C25,
34C60

Retrieve articles in all journals with MSC: 92C20, 34C25, 34C60

Additional Information

DOI:
https://doi.org/10.1090/qam/1770648

Article copyright:
© Copyright 2000
American Mathematical Society