Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Asymptotic analysis of torsional and stretching modes of thin rods


Authors: H. Irago, N. Kerdid and J. M. Viaño
Journal: Quart. Appl. Math. 58 (2000), 495-510
MSC: Primary 74K10; Secondary 74B05, 74G10, 74H45
DOI: https://doi.org/10.1090/qam/1770651
MathSciNet review: MR1770651
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we show that a class of high frequencies of the three-dimensional linearized elasticity system in a thin rod and their associated eigenfunctions converge in a precise sense, as the area of the cross section of the rod goes to zero. The limit model is a coupled one-dimensional problem giving the classical equations for torsion and stretching modes in rods.


References [Enhancements On Off] (What's this?)

  • [1] Z. Tutek and I. Aganović, A justification of the one-dimensional linear model of elastic beam, Math. Methods Appl. Sci. 8 (1986), no. 4, 502–515. MR 870989, https://doi.org/10.1002/mma.1670080133
  • [2] J. A. Álvarez-Dios and J. M. Viaño, Mathematical justification of a one-dimensional model for general elastic shallow arches, Math. Methods Appl. Sci. 21 (1998), no. 4, 281–325. MR 1605351, https://doi.org/10.1002/(SICI)1099-1476(19980310)21:4<281::AID-MMA951>3.0.CO;2-O
  • [3] L. Álvarez Vázquez and J. M. Viaño, Asymptotic justification of an evolution linear thermoelastic model for rods, Comput. Methods Appl. Mech. Engrg. 115 (1994), no. 1-2, 93–109. MR 1278812, https://doi.org/10.1016/0045-7825(94)90189-9
  • [4] A. Bermúdez and J. M. Viaño, Une justification des équations de la thermo-élasticité de poutres à section variable par des méthodes asymptotiques, RAIRO Anal. Numér. 18, 347-376 (1984)
  • [5] F. Bourquin and P. G. Ciarlet, Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal. 87 (1989), no. 2, 392–427. MR 1026860, https://doi.org/10.1016/0022-1236(89)90017-7
  • [6] Carlos Castro and Enrique Zuazua, Une remarque sur l’analyse asymptotique spectrale en homogénéisation, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 11, 1043–1047 (French, with English and French summaries). MR 1396637
  • [7] P. G. Ciarlet and S. Kesavan, Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comput. Methods Appl. Mech. Engrg. 26 (1981), no. 2, 145–172. MR 626720, https://doi.org/10.1016/0045-7825(81)90091-8
  • [8] Jean-Louis Davet, Correction du second ordre pour le calcul des fréquences propres d’une plaque en flexion, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 303 (1986), no. 7, 521–524 (French, with English summary). MR 977379
  • [9] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867
  • [10] Isabelle Gruais, Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 1, 77–105 (French, with English and French summaries). MR 1204630
  • [11] H. Irago, Comparación numérica de vibraciones 3D-1D en vigas elásticas, Tesina de Licenciatura de la Universidad de Santiago de Compostela, España, 1995
  • [12] H. Irago and J. M. Viaño, Second-order asymptotic approximation of flexural vibrations in elastic rods, Math. Models Methods Appl. Sci. 8 (1998), no. 8, 1343–1362. MR 1663448, https://doi.org/10.1142/S0218202598000639
  • [13] Nabil Kerdid, Comportement asymptotique quand l’épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastrée en élasticité linéaire, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 7, 755–758 (French, with English and French summaries). MR 1214429
  • [14] Nabil Kerdid, Modélisation des vibrations d’une multi-structure formée de deux poutres, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 12, 1641–1646 (French, with English and French summaries). MR 1367822
  • [15] N. Kerdid, Étude de problèmes de jonctions de poutres en élasticité linéaire, Thèse de Doctorat Université Pierre et Marie Curie, Paris, 1995
  • [16] N. Kerdid, Modeling the vibrations of a multi-rod structure, RAIRO Modél. Math. Anal. Numér. 31 (1997), no. 7, 891–925 (English, with English and French summaries). MR 1489177
  • [17] H. Le Dret, Modeling of the junction between two rods, J. Math. Pures Appl. (9) 68 (1989), no. 3, 365–397 (English, with French summary). MR 1025910
  • [18] Hervé Le Dret, Vibrations of a folded plate, RAIRO Modél. Math. Anal. Numér. 24 (1990), no. 4, 501–521 (English, with French summary). MR 1070967
  • [19] H. Le Dret, Problèmes variationnels dans les multi-domaines, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 19, Masson, Paris, 1991 (French). Modélisation des jonctions et applications. [Modeling of junctions and applications]. MR 1130395
  • [20] Véronique Lods, Modélisation et justification d’un problème aux valeurs propres pour une plaque insérée dans un support tridimensionnel, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 391–396 (French, with English and French summaries). MR 1320391
  • [21] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). MR 773854
    P. Rabier and J.-M. Thomas, Exercices d’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1985 (French). MR 829708
  • [22] J. M. Rodríguez and J. M. Viaño, Asymptotic derivation of a general linear model for thin-walled elastic rods, Comput. Methods Appl. Mech. Engrg. 147 (1997), no. 3-4, 287–321. MR 1460114, https://doi.org/10.1016/S0045-7825(97)00019-4
  • [23] Maurice Roseau, Vibrations des systèmes mécaniques, Masson, Paris, 1984 (French). Méthodes analytiques et applications. [Analytical methods and applications]. MR 762434
  • [24] J. Sanchez Hubert and E. Sánchez-Palencia, Vibration and coupling of continuous systems, Springer-Verlag, Berlin, 1989. Asymptotic methods. MR 996423
  • [25] L. Trabucho and J. M. Viaño, Dérivation de modèles généralisés de poutres en élasticité par méthode asymptotique, C. R. Acad. Sci. Paris Sér. I Math. 304, 303-306 (1987)
  • [26] L. Trabucho and J. M. Viaño, Existence and characterization of higher-order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Anal. 2 (1989), no. 3, 223–255. MR 1020349
  • [27] L. Trabucho and J. M. Viaño, A new approach of Timoshenko’s beam theory by asymptotic expansion method, RAIRO Modél. Math. Anal. Numér. 24 (1990), no. 5, 651–680 (English, with French summary). MR 1076964
  • [28] L. Trabucho and J. M. Viaño, Mathematical modelling of rods, Handbook of numerical analysis, Vol. IV, Handb. Numer. Anal., IV, North-Holland, Amsterdam, 1996, pp. 487–974. MR 1422507

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74K10, 74B05, 74G10, 74H45

Retrieve articles in all journals with MSC: 74K10, 74B05, 74G10, 74H45


Additional Information

DOI: https://doi.org/10.1090/qam/1770651
Article copyright: © Copyright 2000 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website