Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic analysis of torsional and stretching modes of thin rods


Authors: H. Irago, N. Kerdid and J. M. Viaño
Journal: Quart. Appl. Math. 58 (2000), 495-510
MSC: Primary 74K10; Secondary 74B05, 74G10, 74H45
DOI: https://doi.org/10.1090/qam/1770651
MathSciNet review: MR1770651
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we show that a class of high frequencies of the three-dimensional linearized elasticity system in a thin rod and their associated eigenfunctions converge in a precise sense, as the area of the cross section of the rod goes to zero. The limit model is a coupled one-dimensional problem giving the classical equations for torsion and stretching modes in rods.


References [Enhancements On Off] (What's this?)

  • [1] I. Aganovic and Z. Tutek, A justification of the one-dimensional linear model of elastic beams, Math. Meth. Appl. Sci. 8, 1-14 (1986) MR 870989
  • [2] J. A. Álvarez-Dios and J. M. Viaño, Mathematical justification of a one-dimensional model for general elastic shallow arches, Math. Meth. Appl. Sci. 21, 281-325 (1997) MR 1605351
  • [3] L. J. Álvarez-Vázquez and J. M. Viaño, Asymptotic justification of an evolution linear thermoelastic model for rods, Comput. Methods Appl. Mech. Engrg. 115, 93-109 (1994) MR 1278812
  • [4] A. Bermúdez and J. M. Viaño, Une justification des équations de la thermo-élasticité de poutres à section variable par des méthodes asymptotiques, RAIRO Anal. Numér. 18, 347-376 (1984)
  • [5] F. Bourquin and P. G. Ciarlet, Modelling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal. 87, 392-427 (1989) MR 1026860
  • [6] C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation, C. R. Acad. Sci. Paris Sér. I Math. 322, 1043-1047 (1996) MR 1396637
  • [7] P. G. Ciarlet and S. Kesavan, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comput. Methods Appl. Mech. Engrg. 26, 145-172 (1981) MR 626720
  • [8] J. L. Davet, Correction du second ordre pour le calcul des fréquences propres d'une plaque en flexion, C. R. Acad. Sci. Paris Sér. II Math. 303, 521-524 (1986) MR 977379
  • [9] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, Vol. 749, Springer, Berlin, 1981 MR 548867
  • [10] I. Gruais, Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée, RAIRO Modél. Math. Anal. Numér. 27, 77-105 (1993) MR 1204630
  • [11] H. Irago, Comparación numérica de vibraciones 3D-1D en vigas elásticas, Tesina de Licenciatura de la Universidad de Santiago de Compostela, España, 1995
  • [12] H. Irago and J. M. Viaño, Second-order asymptotic approximation of flexural vibrations in elastic rods, Math. Models Methods Appl. Sci. 8, 1343-1362 (1998) MR 1663448
  • [13] N. Kerdid, Comportement asymptotique quand l'épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastrée en élasticité linéaire, C. R. Acad. Sci. Paris Sér. I Math. 316, 755-758 (1993) MR 1214429
  • [14] N. Kerdid, Modélisation des vibrations d'une multi-structure formée de deux poutres, C. R. Acad. Sci. Paris Série I Math. 321, 1641-1646 (1995) MR 1367822
  • [15] N. Kerdid, Étude de problèmes de jonctions de poutres en élasticité linéaire, Thèse de Doctorat Université Pierre et Marie Curie, Paris, 1995
  • [16] N. Kerdid, Modeling the vibrations of a multi-rod structure, RAIRO Módel. Math. Anal. Numér. 31, 1-34 (1997) MR 1489177
  • [17] H. Le Dret, Modelling of the junction between two rods, J. Math. Pures Appl. 68, 365-397 (1989) MR 1025910
  • [18] H. Le Dret, Vibrations of a folded plate, RAIRO Módel. Math. Anal. Numér. 24, 501-521 (1990) MR 1070967
  • [19] H. Le Dret, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, Recherches en Mathématiques Appliquées, Vol. 19, Masson, Paris, 1991 MR 1130395
  • [20] V. Lods, Modélisation et justification d'un problème aux valeurs propres pour une plaque insérée dans un support tridimensional, C. R. Acad. Sci. Paris Sér. I Math. 320, 391-396 (1995) MR 1320391
  • [21] P. A. Raviart and J. M. Thomas, Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles, Masson, Paris, 1983 MR 773854
  • [22] J. M. Rodríguez-Seijo and J. M. Viaño, Asymptotic derivation of a general linear model for thin-walled elastic rods, Comput. Methods Appl. Mech. Engrg. 147, 287-321 (1997) MR 1460114
  • [23] M. Roseau, Vibrations des systèmes méchaniques, Masson, Paris, 1984 MR 762434
  • [24] J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and coupling of continuous systems. Asymptotic methods, Springer-Verlag, Berlin, 1989 MR 996423
  • [25] L. Trabucho and J. M. Viaño, Dérivation de modèles généralisés de poutres en élasticité par méthode asymptotique, C. R. Acad. Sci. Paris Sér. I Math. 304, 303-306 (1987)
  • [26] L. Trabucho and J. M. Viaño, Existence and characterization of higher-order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Analysis 2, 223-255 (1989) MR 1020349
  • [27] L. Trabucho and J. M. Viaño, A new approach of Timoshenko's beam theory by the asymptotic expansion method, RAIRO Módel. Math. Anal. Numér. 24, 651-680 (1990) MR 1076964
  • [28] L. Trabucho and J. M. Viaño, Mathematical modelling of rods, In Handbook of Numerical Analysis, Vol. IV, Ciarlet, P. G. and Lions, J. L., Editors, North-Holland, Amsterdam, 1996 MR 1422507

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74K10, 74B05, 74G10, 74H45

Retrieve articles in all journals with MSC: 74K10, 74B05, 74G10, 74H45


Additional Information

DOI: https://doi.org/10.1090/qam/1770651
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society