Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Existence and uniqueness for a quasistatic frictional bilateral contact problem in thermoviscoelasticity

Authors: M. Rochdi and M. Shillor
Journal: Quart. Appl. Math. 58 (2000), 543-560
MSC: Primary 74M15; Secondary 35Q72, 74D10, 74F05, 74G25, 74G30, 74M10
DOI: https://doi.org/10.1090/qam/1770654
MathSciNet review: MR1770654
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence and uniqueness of the weak solution for a quasistatic thermoviscoelastic problem which describes bilateral frictional contact between a deformable body and a moving rigid foundation. The model consists of the heat equation for the temperature, the elliptic viscoelasticity system for the displacements, the SJK-Coulomb law of friction and frictional heat generation condition. The proof is accomplished in two steps. First, the existence of solutions for a regularized problem is established and a priori estimates obtained. Then the limit function, which is the weak solution of the original problem, is shown to be the unique fixed point of the solution operator when the friction coefficient is small.

References [Enhancements On Off] (What's this?)

  • [1] R. S. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press, New York and London, 1975 MR 0450957
  • [2] L.-E. Andersson, A quasistatic frictional problem with normal compliance, Nonlinear Anal. 16(4), 347-369 (1991) MR 1093846
  • [3] K. T. Andrews, P. Shi, M. Shillor, and S. Wright, Thermoelastic contact with Barber's heat exchange condition, Appl. Math. Opt. 28(1), 11 48 (1993) MR 1208796
  • [4] K. T. Andrews, K. L. Kuttler, and M. Shillor, On the dynamic behaviour of a thermoviscoelastic body in frictional contact with a rigid obstacle, European J. Appl. Math. 8, 417-436 (1997) MR 1471601
  • [5] K. T. Andrews, A. Klarbring, M. Shillor, and S. Wright, On the the dynamic behavior of a thermoviscoelastic contact problem with friction and wear, Internat. J. Engrg. Sci. 35(14), 1291-1309 (1997) MR 1488812
  • [6] J.-P. Aubin, Approximation of Elliptic Boundary Value Problems, John Wiley and Sons, New York, 1972 MR 0478662
  • [7] M. Cocu, E. Pratt, and M. Raous, Formulation and approximation of quasistatic frictional contact, Internat. J. Engrg. Sci. 34(7), 783-798 (1996) MR 1397607
  • [8] G. Duvaut, Loi de frottement non locale, J. Méc. Thé. Appl., Special issue, 73-78 (1982) MR 670346
  • [9] G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, 1972 MR 0464857
  • [10] I. Figueiro and L. Trabucho, A class of contact and friction dynamic problems in thermoelasticity and in thermoviscoelasticity, Internat. J. Engrg. Sci. 33(1), 45-66 (1995) MR 1309740
  • [11] R. J. Gu, K. L. Kuttler, and M. Shillor, Frictional wear of a thermoelastic beam, J. Math. Anal. Appl. 242, 212-236 (2000) MR 1737847
  • [12] R. J. Gu and M. Shillor, Thermal and wear finite elements analysis of an elastic beam in sliding contact, Internat. J. Solids Structures, to appear
  • [13] L. Johansson and A. Klarbring, Thermoelastic frictional contact problems: Modelling, finite element approximation and numerical realization, Comput. Methods Appl. Mech. Engrg. 105, 181-210 (1993) MR 1220080
  • [14] K. L. Kuttler, Time-dependent implicit evolution equations, Nonlinear Anal. 10(5), 447-463 (1986) MR 839357
  • [15] K. L. Kuttler, Y. Renard, and M. Shillor, Models and simulations of dynamic frictional contact of a beam. Computational modeling of contact and friction, Comput. Methods Appl. Mech. Engrg. 177, 259-272 (1999) MR 1710454
  • [16] K. L. Kuttler and M. Shillor, Set-valued pseudomonotone maps and degenerate evolution inequalities, Commun. Contemp. Math. 1, 87-123 (1999) MR 1681814
  • [17] N. Kikuchi and T. J. Oden, Contact Problems in Elasticity, SIAM, 1988 MR 961258
  • [18] A. Klarbring, A. Mikelic, and M. Shillor, A global existence result for the quasistatic frictional contact problem with normal compliance, pp. 85-111 in Unilateral Problems in Structural Mechanics IV, eds. G. DelPiero and F. Maceri, Birkhäuser, Boston, 1991
  • [19] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, 1969
  • [20] M. Rochdi and M. Shillor, A dynamic thermoviscoelastic frictional contact problem with damped response, preprint, 1998
  • [21] M. Rochdi, M. Shillor, and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J. Elasticity 51, 105-126 (1998) MR 1664496
  • [22] M. Rochdi, M. Shillor, and M. Sofonea, A quasistatic contact problem with directional friction and damped response, Applicable Analysis 68(3-4), 409-422 (1998) MR 1701715
  • [23] M. Shillor, editor, Contact Mechanics, a special issue of Computer and Math. Modelling 28, 4-8 (1998)
  • [24] M. Shillor and M. Sofonea, A quasistatic viscoelastic contact problem with friction, Internat. J. Engrg. Sci., to appear MR 1763038
  • [25] N. Strömberg, L. Johansson, and A. Klarbring, Derivation and analysis of a generalized standard model for contact friction and wear, Internat. J. Solids Structures 33(13), 1817-1836 (1996) MR 1392130

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74M15, 35Q72, 74D10, 74F05, 74G25, 74G30, 74M10

Retrieve articles in all journals with MSC: 74M15, 35Q72, 74D10, 74F05, 74G25, 74G30, 74M10

Additional Information

DOI: https://doi.org/10.1090/qam/1770654
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society