Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Slow decay in linear thermoelasticity

Author: Herbert Koch
Journal: Quart. Appl. Math. 58 (2000), 601-612
MSC: Primary 74F05; Secondary 35B35, 35B40, 35Q72, 74H40
DOI: https://doi.org/10.1090/qam/1788420
MathSciNet review: MR1788420
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Energy estimates show that linearized thermoelasticity defines a contraction semigroup on a Hilbert space. We show that under a geometric condition this contraction is not strict, or, more precisely, the norm of the semigroup is 1 for all $ t \ge 0$. Convex domains always satisfy the geometric condition.

References [Enhancements On Off] (What's this?)

  • [1] O. Lopes, D. Henry, and A. Perissinitto, Jr., On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA 21, No. 1, 65-75 (1993) MR 1231529
  • [2] C. Dafermos, On the existence and asymptotic stability of solutions to the equation of linear thermoelasticity, Arch. Rational Mech. Anal. 29, 241-271 (1968) MR 0233539
  • [3] D. Henry, Topics in analysis, Publ. Sec. Mat. Univ. Autònoma Barcelona 31, 29-84 (1987) MR 898603
  • [4] L. Hörmander, The Analysis of Linear Partial Differential Operators 3, Springer-Verlag, New York, 1985
  • [5] G. Lebeau and E. Zuazua, Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire, C. R. Acad. Sci., Paris, Ser. I 324, No. 4, 409-415 (1997) MR 1440958
  • [6] S. Jiang, J. E. Muñoz Rivera, and R. Racke, Asymptotic stability and global existence in thermoelasticity with symmetry, Quart. Appl. Math. 56, 259-275 (1998) MR 1622566
  • [7] J. E. Muñoz Rivera, Energy decay rates in linear thermoelasticity, Funkcial. Ekvac. 35, 19-30 (1992) MR 1172418
  • [8] F. Rellich, Darstellung der Eigenwerte von $ \Delta u + \lambda u$ durch ein Randintegral, Math. Z. 46, 635-636 (1940) MR 0002456
  • [9] M. Taylor, Reflection of singularities of solutions to systems of differential equations, Comm. Pure Appl. Math. 28, 475-478 (1975) MR 0509098
  • [10] M. Taylor, Partial Differential Equations II, Springer-Verlag, New York, 1996
  • [11] E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl. 74, 291-315 (1995) MR 1341768

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74F05, 35B35, 35B40, 35Q72, 74H40

Retrieve articles in all journals with MSC: 74F05, 35B35, 35B40, 35Q72, 74H40

Additional Information

DOI: https://doi.org/10.1090/qam/1788420
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society