Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Qualitative behavior of conservation laws with reaction term and nonconvex flux


Author: Corrado Mascia
Journal: Quart. Appl. Math. 58 (2000), 739-761
MSC: Primary 35L65; Secondary 35L60, 74J30
DOI: https://doi.org/10.1090/qam/1788426
MathSciNet review: MR1788426
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of the paper is to study qualitative behavior of solutions to the equation

$\displaystyle \frac{{\partial u}}{{\partial t}} + \frac{{\partial f\left( u \right)}}{{\partial x}} = g\left( u \right) ,$

where $ \left( x, t \right) \in \mathbb{R} \times {\mathbb{R}_ + }, u = u\left( x, t \right) \in \mathbb{R}$. The main new feature with respect to previous works is that the flux function $ f$ may have finitely many inflection points, intervals in which it is affine, and corner points. The function $ g$ is supposed to be zero at 0 and 1, and positive in between.

References [Enhancements On Off] (What's this?)

  • [1] C. M. Dafermos, Characteristics in hyperbolic conservation laws. A study of the structure and the asymptotic behavior of solutions, in Nonlinear Analysis and Mechanics, Vol. 1 (R. J. Knops, ed.), Research Notes in Mathematics 17, Pitman, 1977, pp. 1-58 MR 0481581
  • [2] C. M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. 26, 1097-1119 (1977) MR 0457947
  • [3] C. M. Dafermos, Large time behavior of solutions of hyperbolic balance laws, Bull. Soc. Math. Grèce (N.S.) 25, 15-29 (1984) MR 815565
  • [4] C. M. Dafermos, Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A 99, 201-239 (1985) MR 785530
  • [5] H. Fan and J. K. Hale, Attractors in inhomogeneous conservation laws and parabolic regularizations, Trans. Amer. Math. Soc. 347, 1239-1254 (1995) MR 1270661
  • [6] H. Fan and J. K. Hale, Large-time behavior in inhomogeneous conservation laws, Arch. Rational Mech. Anal. 125, 201-216 (1993) MR 1245070
  • [7] B. T. Hayes, Stability of solutions to a destabilized Hopf equation, Comm. Pure Appl. Math. 48, 157-166 (1995) MR 1319699
  • [8] A. Kolmogorov, I. Petrovsky, and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à, un problème biologique, Boll. Univ. Moscow Ser. Internat. Sec. A 1, 1-25 (1937)
  • [9] S. N. Kruzkov, First order quasilinear equations in several independent variables, Mat. Sb. 51, 99-128 (1960) (Russian); English transl. in Amer. Math. Soc. Transl. (2) 42, 199-231 (1964)
  • [10] S. N. Kruzkov and N. S. Petrosjan, Asymptotic behaviour of the solutions of the Cauchy problem for nonlinear first order equations, Uspekhi Mat. Nauk 42, 3-40 (1987) (Russian); English transl. in Russian Math. Surveys 42, 1-47 (1987)
  • [11] P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10, 537-566 (1957) MR 0093653
  • [12] T. P. Liu, Invariants and asymptotic behavior of solutions of a conservation law, Proc. Amer. Math. Soc. 71, 227-231 (1978) MR 500495
  • [13] A. N. Lyberopoulos, A Poincaré-Bendixson theorem for scalar balance laws, Proc. Roy Soc. Edinburgh Sect. A 124, 589-607 (1994) MR 1286920
  • [14] A. N. Lyberopoulos, Asymptotic oscillations of solutions of scalar conservation laws with convexity under the action of a linear excitation, Quart. Appl. Math. 48, 755-765 (1990) MR 1079918
  • [15] A. N. Lyberopoulos, Large time structure of solutions of scalar conservation laws without convexity in the presence of a linear source field, J. Differential Equations 99, 342-380 (1992) MR 1184059
  • [16] C. Mascia, Continuity in finite time of entropy solutions for nonconvex conservation laws with reaction term, Comm. Partial Differential Equations 23, 913-931 (1998) MR 1632756
  • [17] C. Mascia, Travelling wave solutions for a balance law, Proc. Roy. Soc. Edinburgh Sect. A 127, 567-593 (1997) MR 1453282
  • [18] C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance law, Advances in Differential Equations 2, 779-810 (1997) MR 1751427
  • [19] R. Natalini and A. Tesei, On a class of perturbed conservation laws, Adv. in Appl. Math. 13, 429-453 (1992) MR 1190121
  • [20] O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, Amer. Math. Soc. Transl. Ser. 2 33, 285-290 (1964)
  • [21] C. Sinestrari, Asymptotic profile of solutions of conservation laws with source, Differential Integral Equations 9, 499-525 (1966) MR 1371704
  • [22] C. Sinestrari, Large time behaviour of solutions of balance laws with periodic initial data, NoDEA Nonlinear Differential Equations Appl. 2, 111-131 (1995) MR 1322204
  • [23] C. Sinestrari, The Riemann problem for an inhomogeneous conservation law without convexity, SIAM J. Math. Anal. 28, 109-135 (1997) MR 1427730
  • [24] C. Sinestrari, Instability of discontinuous traveling waves for hyperbolic balance laws, J. Differential Equations 134, 269-285 (1997) MR 1432096
  • [25] J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York, 1983 MR 688146
  • [26] A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling wave solutions of parabolic systems, Translations of Mathematical Monographs 140, American Mathematical Society, Providence, RI, 1994 MR 1297766
  • [27] H. F. Weinberger, Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity, Ann. Inst. H. Poincaré (Anal. Non Linéaire) 7, 407-425 (1990) MR 1138530

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L65, 35L60, 74J30

Retrieve articles in all journals with MSC: 35L65, 35L60, 74J30


Additional Information

DOI: https://doi.org/10.1090/qam/1788426
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society