Qualitative behavior of conservation laws with reaction term and nonconvex flux

Author:
Corrado Mascia

Journal:
Quart. Appl. Math. **58** (2000), 739-761

MSC:
Primary 35L65; Secondary 35L60, 74J30

DOI:
https://doi.org/10.1090/qam/1788426

MathSciNet review:
MR1788426

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of the paper is to study qualitative behavior of solutions to the equation

**[1]**C. M. Dafermos,*Characteristics in hyperbolic conservation laws. A study of the structure and the asymptotic behavior of solutions*, in*Nonlinear Analysis and Mechanics*, Vol. 1 (R. J. Knops, ed.), Research Notes in Mathematics**17**, Pitman, 1977, pp. 1-58 MR**0481581****[2]**C. M. Dafermos,*Generalized characteristics and the structure of solutions of hyperbolic conservation laws*, Indiana Univ. Math.**26**, 1097-1119 (1977) MR**0457947****[3]**C. M. Dafermos,*Large time behavior of solutions of hyperbolic balance laws*, Bull. Soc. Math. Grèce (N.S.)**25**, 15-29 (1984) MR**815565****[4]**C. M. Dafermos,*Regularity and large time behaviour of solutions of a conservation law without convexity*, Proc. Roy. Soc. Edinburgh Sect.**A 99**, 201-239 (1985) MR**785530****[5]**H. Fan and J. K. Hale,*Attractors in inhomogeneous conservation laws and parabolic regularizations*, Trans. Amer. Math. Soc.**347**, 1239-1254 (1995) MR**1270661****[6]**H. Fan and J. K. Hale,*Large-time behavior in inhomogeneous conservation laws*, Arch. Rational Mech. Anal.**125**, 201-216 (1993) MR**1245070****[7]**B. T. Hayes,*Stability of solutions to a destabilized Hopf equation*, Comm. Pure Appl. Math.**48**, 157-166 (1995) MR**1319699****[8]**A. Kolmogorov, I. Petrovsky, and N. Piscounov,*Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à, un problème biologique*, Boll. Univ. Moscow Ser. Internat. Sec.**A 1**, 1-25 (1937)**[9]**S. N. Kruzkov,*First order quasilinear equations in several independent variables*, Mat. Sb.**51**, 99-128 (1960) (Russian); English transl. in Amer. Math. Soc. Transl. (2)**42**, 199-231 (1964)**[10]**S. N. Kruzkov and N. S. Petrosjan,*Asymptotic behaviour of the solutions of the Cauchy problem for nonlinear first order equations*, Uspekhi Mat. Nauk**42**, 3-40 (1987) (Russian); English transl. in Russian Math. Surveys**42**, 1-47 (1987)**[11]**P. D. Lax,*Hyperbolic systems of conservation laws II*, Comm. Pure Appl. Math.**10**, 537-566 (1957) MR**0093653****[12]**T. P. Liu,*Invariants and asymptotic behavior of solutions of a conservation law*, Proc. Amer. Math. Soc.**71**, 227-231 (1978) MR**500495****[13]**A. N. Lyberopoulos,*A Poincaré-Bendixson theorem for scalar balance laws*, Proc. Roy Soc. Edinburgh Sect.**A 124**, 589-607 (1994) MR**1286920****[14]**A. N. Lyberopoulos,*Asymptotic oscillations of solutions of scalar conservation laws with convexity under the action of a linear excitation*, Quart. Appl. Math.**48**, 755-765 (1990) MR**1079918****[15]**A. N. Lyberopoulos,*Large time structure of solutions of scalar conservation laws without convexity in the presence of a linear source field*, J. Differential Equations**99**, 342-380 (1992) MR**1184059****[16]**C. Mascia,*Continuity in finite time of entropy solutions for nonconvex conservation laws with reaction term*, Comm. Partial Differential Equations**23**, 913-931 (1998) MR**1632756****[17]**C. Mascia,*Travelling wave solutions for a balance law*, Proc. Roy. Soc. Edinburgh Sect.**A 127**, 567-593 (1997) MR**1453282****[18]**C. Mascia and C. Sinestrari,*The perturbed Riemann problem for a balance law*, Advances in Differential Equations**2**, 779-810 (1997) MR**1751427****[19]**R. Natalini and A. Tesei,*On a class of perturbed conservation laws*, Adv. in Appl. Math.**13**, 429-453 (1992) MR**1190121****[20]**O. A. Oleinik,*Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation*, Amer. Math. Soc. Transl. Ser. 2**33**, 285-290 (1964)**[21]**C. Sinestrari,*Asymptotic profile of solutions of conservation laws with source*, Differential Integral Equations**9**, 499-525 (1966) MR**1371704****[22]**C. Sinestrari,*Large time behaviour of solutions of balance laws with periodic initial data*, NoDEA Nonlinear Differential Equations Appl.**2**, 111-131 (1995) MR**1322204****[23]**C. Sinestrari,*The Riemann problem for an inhomogeneous conservation law without convexity*, SIAM J. Math. Anal.**28**, 109-135 (1997) MR**1427730****[24]**C. Sinestrari,*Instability of discontinuous traveling waves for hyperbolic balance laws*, J. Differential Equations**134**, 269-285 (1997) MR**1432096****[25]**J. Smoller,*Shock waves and reaction-diffusion equations*, Springer-Verlag, New York, 1983 MR**688146****[26]**A. I. Volpert, V. A. Volpert, and V. A. Volpert,*Traveling wave solutions of parabolic systems*, Translations of Mathematical Monographs**140**, American Mathematical Society, Providence, RI, 1994 MR**1297766****[27]**H. F. Weinberger,*Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity*, Ann. Inst. H. Poincaré (Anal. Non Linéaire)**7**, 407-425 (1990) MR**1138530**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
35L60,
74J30

Retrieve articles in all journals with MSC: 35L65, 35L60, 74J30

Additional Information

DOI:
https://doi.org/10.1090/qam/1788426

Article copyright:
© Copyright 2000
American Mathematical Society