Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On stability of shock waves in relativistic magnetohydrodynamics

Author: Yu. L. Trakhinin
Journal: Quart. Appl. Math. 59 (2001), 25-45
MSC: Primary 76W05; Secondary 35L50, 35Q35, 76L05
DOI: https://doi.org/10.1090/qam/1811093
MathSciNet review: MR1811093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The structural stability of relativistic magnetohydrodynamic shock waves is studied. Stability results are obtained for the special case of fast parallel shock waves. It is proved that the instability and linear stability domains coincide with those of shock waves in relativistic gas dynamics. The domain of structural (nonlinear) stability, where the uniform Lopatinski condition is fulfilled for the stability problem, is found. It is shown that the structural stability domain is smaller than that of relativistic gas dynamic shock waves.

References [Enhancements On Off] (What's this?)

  • [1] A. M. Anile and G. Russo, Linear stability for plane relativistic shock waves, Phys. Fluids 30, 1045-1051 (1987)
  • [2] A. M. Blokhin, The estimate of energy integral of mixed problem for equations of gas dynamics with boundary conditions on a shock wave, Sibirsk. Mat. Zh. (4) 22, 23-51 (1981); English transl. in Siberian Math. J. 22 (1981) MR 624402
  • [3] A. M. Blokhin, Uniqueness of classical solution of mixed problem for equations of gas dynamics with boundary conditions on a shock wave, Sibirsk. Mat. Zh. (5) 23, 17-30 (1982); English transl. in Siberian Math. J. 23 (1982) MR 673535
  • [4] A. M. Blokhin, Energy integrals and their applications in problems of gas dynamics, Nauka, Novosibirsk, 1986 (in Russian) MR 888816
  • [5] A. M. Blokhin, Strong Discontinuities in Magnetohydrodynamics, Nova Science Publishers, Inc., Commack, NY, 1994 MR 1406089
  • [6] A. M. Blokhin and E. V. Mishchenko, Investigation on shock waves stability in relativistic gas dynamics, Matematiche (Catania) 48, 53-75 (1993) MR 1283749
  • [7] A. M. Blokhin and Yu. L. Trakhinin, Investigation of the well-posedness of the mixed problem on the stability of a fast shock wave in magnetohydrodynamics, Matematiche (Catania) 49, 123-141 (1994) MR 1386368
  • [8] A. M. Blokhin, Symmetrization of continuum mechanics equations, Siberian J. Differential Equations 2, 3-47 (1995) MR 1388025
  • [9] A. M. Blokhin, V. Romano, and Yu. L. Trakhinin, Some mathematical properties of radiating gas model obtained with a variable Eddington factor, Z. Angew. Math. Phys. (ZAMP) 47, 639-658 (1996) MR 1420849
  • [10] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques, Comptes Rendues de l'Academie des Sciences Paris Sér. A 278, 909-912 (1974) MR 0342870
  • [11] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proceedings of the National Academy of Sciences, U.S.A. 68, 1686-1688 (1971) MR 0285799
  • [12] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 31, 123-131 (1974) MR 0062932
  • [13] C. S. Gardner and M. D. Kruskal, Stability of plane magnetohydrodynamic shocks, Phys. Fluids 7, 700-706 (1964) MR 0170581
  • [14] S. K. Godunov, An interesting class of quasilinear systems, Dokl. Akad. Nauk SSSR 39, 521-523 (1961) MR 0131653
  • [15] S. K. Godunov, Symmetrization of magnetohydrodynamics equations, Chislennye Metody Mekhaniki Sploshnoi Sredy 3, 26 34 (1972) (in Russian)
  • [16] A. Jeffrey, Quasilinear Hyperbolic Systems and Waves, Pitman, New York, 1976 MR 0417585
  • [17] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal. 58, 181-205 (1975) MR 0390516
  • [18] H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure and Appl. Math. 23, 277-296 (1970) MR 0437941
  • [19] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York and Oxford, 1997
  • [20] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Reg. Conf. Lecture, No. 11, Philadelphia, 1973 MR 0350216
  • [21] A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics, Benjamin, New York, 1967
  • [22] A. Lichnerowicz, Relativistic Fluid Dynamics, Cremonese, Rome, 1971 MR 0297295
  • [23] A. Lichnerowicz, Shock waves in relativistic magnetohydrodynamics under general assumptions, J. Math. Phys. 17, 2135-2141 (1975) MR 0424146
  • [24] A. Majda, The stability of multi-dimensional shock fronts--a new problem for linear hyperbolic equations, Mem. Amer. Math. Soc. 41, No. 275, Providence, RI, 1983
  • [25] A. Majda, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 43, No. 281, Providence, RI, 1983 MR 699241
  • [26] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984 MR 748308
  • [27] T. Ruggeri and A. Strumia, Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics, J. Math. Phys. 22, 1824-1827 (1981) MR 628566
  • [28] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasilinear hyperbolic systems, Ann. Inst. Henri Poincaré Sect. A (N.S.) 34, 65-84 (1981) MR 605357
  • [29] G. Russo and A. M. Anile, Stability properties of relativistic shock waves: Basic results, Phys. Fluids 30, 2406-2413 (1987)
  • [30] S. L. Sobolev, Some applications of functional analysis to the problems of mathematical physics, Publishing House of Leningrad State University, Leningrad, 1950 (in Russian) MR 0052039

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76W05, 35L50, 35Q35, 76L05

Retrieve articles in all journals with MSC: 76W05, 35L50, 35Q35, 76L05

Additional Information

DOI: https://doi.org/10.1090/qam/1811093
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society