Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On stability of shock waves in relativistic magnetohydrodynamics

Author: Yu. L. Trakhinin
Journal: Quart. Appl. Math. 59 (2001), 25-45
MSC: Primary 76W05; Secondary 35L50, 35Q35, 76L05
DOI: https://doi.org/10.1090/qam/1811093
MathSciNet review: MR1811093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The structural stability of relativistic magnetohydrodynamic shock waves is studied. Stability results are obtained for the special case of fast parallel shock waves. It is proved that the instability and linear stability domains coincide with those of shock waves in relativistic gas dynamics. The domain of structural (nonlinear) stability, where the uniform Lopatinski condition is fulfilled for the stability problem, is found. It is shown that the structural stability domain is smaller than that of relativistic gas dynamic shock waves.

References [Enhancements On Off] (What's this?)

  • [1] A. M. Anile and G. Russo, Linear stability for plane relativistic shock waves, Phys. Fluids 30, 1045-1051 (1987)
  • [2] A. M. Blokhin, Estimation of the energy integral of a mixed problem for gas dynamics equations with boundary conditions on the shock wave, Sibirsk. Mat. Zh. 22 (1981), no. 4, 23–51, 229 (Russian). MR 624402
  • [3] A. M. Blokhin, Uniqueness of the classical solution of a mixed problem for equations of gas dynamics with boundary conditions on a shock wave, Sibirsk. Mat. Zh. 23 (1982), no. 5, 17–30, 222 (Russian). MR 673535
  • [4] A. M. Blokhin, \cyr Integraly ènergii i ikh prilozheniya k zadacham gazovoĭ dinamiki, “Nauka” Sibirsk. Otdel., Novosibirsk, 1986 (Russian). With an appendix by the author and D. L. Tkachëv. MR 888816
  • [5] A. M. Blokhin, Strong discontinuities in magnetohydrodynamics, Nova Science Publishers, Inc., Commack, NY, 1994. Translated by A. V. Zakharov. MR 1406089
  • [6] Alexander M. Blokhin and Evgeniy V. Mishchenko, Investigation on shock waves stability in relativistic gas dynamics, Matematiche (Catania) 48 (1993), no. 1, 53–75 (1994). MR 1283749
  • [7] Alexander Blokhin and Yuri Trakhinin, Investigation of the well-posedness of the mixed problem on the stability of fast shock waves in magnetohydrodynamics, Matematiche (Catania) 49 (1994), no. 1, 123–141 (1995). MR 1386368
  • [8] A. M. Blokhin, A study of strong discontinuities stability in continuum mechanics, Siberian J. Differential Equations 1 (1995), no. 1, 1–14. MR 1388025
  • [9] A. M. Blokhin, V. Romano, and Yu. L. Trakhinin, Some mathematical properties of radiating gas model obtained with a variable Eddington factor, Z. Angew. Math. Phys. 47 (1996), no. 5, 639–658. MR 1420849, https://doi.org/10.1007/BF00915267
  • [10] Guy Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris Sér. A 278 (1974), 909–912 (French). MR 0342870
  • [11] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 1686–1688. MR 0285799
  • [12] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345–392. MR 0062932, https://doi.org/10.1002/cpa.3160070206
  • [13] C. S. Gardner and M. D. Kruskal, Stability of plane magnetohydrodynamic shocks, Phys. Fluids 7 (1964), 700–706. MR 0170581, https://doi.org/10.1063/1.1711271
  • [14] S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR 139 (1961), 521–523 (Russian). MR 0131653
  • [15] S. K. Godunov, Symmetrization of magnetohydrodynamics equations, Chislennye Metody Mekhaniki Sploshnoi Sredy 3, 26 34 (1972) (in Russian)
  • [16] A. Jeffrey, Quasilinear hyperbolic systems and waves, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976. Research Notes in Mathematics, No. 5. MR 0417585
  • [17] Tosio Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 181–205. MR 0390516, https://doi.org/10.1007/BF00280740
  • [18] Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 0437941, https://doi.org/10.1002/cpa.3160230304
  • [19] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York and Oxford, 1997
  • [20] Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR 0350216
  • [21] A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics, Benjamin, New York, 1967
  • [22] A. Lichnerowicz, Ondes des choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes, Relativistic fluid dynamics Centro Internaz. Mat. Estivo (C.I.M.E.), I Ciclo, Bressanone, 1970) Edizioni Cremonese, Rome, 1971, pp. 87–203 (French). MR 0297295
  • [23] André Lichnerowicz, Shock waves in relativistic magnetohydrodynamics under general assumptions, J. Mathematical Phys. 17 (1976), no. 12, 2135–2142. MR 0424146, https://doi.org/10.1063/1.522857
  • [24] A. Majda, The stability of multi-dimensional shock fronts--a new problem for linear hyperbolic equations, Mem. Amer. Math. Soc. 41, No. 275, Providence, RI, 1983
  • [25] Andrew Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), no. 281, v+93. MR 699241, https://doi.org/10.1090/memo/0281
  • [26] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308
  • [27] Tommaso Ruggeri and Alberto Strumia, Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics, J. Math. Phys. 22 (1981), no. 8, 1824–1827. MR 628566, https://doi.org/10.1063/1.525129
  • [28] Tommaso Ruggeri and Alberto Strumia, Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. H. Poincaré Sect. A (N.S.) 34 (1981), no. 1, 65–84. MR 605357
  • [29] G. Russo and A. M. Anile, Stability properties of relativistic shock waves: Basic results, Phys. Fluids 30, 2406-2413 (1987)
  • [30] S. L. Sobolev, Nekotorye primeneniya funkcional′nogo analiza v matematičeskoĭ fizike, Izdat. Leningrad. Gos. Univ., Leningrad, 1950 (Russian). MR 0052039

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76W05, 35L50, 35Q35, 76L05

Retrieve articles in all journals with MSC: 76W05, 35L50, 35Q35, 76L05

Additional Information

DOI: https://doi.org/10.1090/qam/1811093
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society