Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback

Authors:
Wei-Jiu Liu and Enrique Zuazua

Journal:
Quart. Appl. Math. **59** (2001), 269-314

MSC:
Primary 74F05; Secondary 35B35, 35Q72, 74M05

DOI:
https://doi.org/10.1090/qam/1828455

MathSciNet review:
MR1828455

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using multiplier techniques and Lyapunov methods, we derive explicit decay rates for the energy in the higher-dimensional system of thermoelasticity with a nonlinear velocity feedback on part of the boundary of a thermoelastic body, which is clamped along the rest of its boundary.

**[1]**R. Adams,*Sobolev Spaces*, Academic Press, New York, 1975 MR**0450957****[2]**S. Agmon,*Lectures on Elliptic Boundary Value Problems*, D. Van Nostrand Company, Inc., Princeton, NJ, 1965 MR**0178246****[3]**F. Alabau and V. Komornik,*Boundary observability, controllability and stabilization of linear elastodynamic systems*, SIAM J. Control Optim.**37**, no. 2, 521-542 (1999) MR**1665070****[4]**V. I. Arnold,*Mathematical Methods of Classical Mechanics*, Springer-Verlag, New York, 1989 MR**997295****[5]**G. Avalos and I. Lasiecka,*Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation*, SIAM J. Math. Anal.**29**, 155-182 (1998) MR**1617180****[6]**V. Barbu,*Nonlinear Semigroups and Differential Equations in Banach Spaces*, Noordhoff, Leyden, The Netherlands, 1976 MR**0390843****[7]**E. Bisognin, V. Bisognin, G. P. Menzala, and E. Zuazua,*On exponential stability for the Von Kármán equations in the presence of thermal effects*, Math. Methods Appl. Sci.**21**, 393-416 (1998) MR**1608076****[8]**H. Brezis,*Analyse Fonctionnelle: Théorie et Applications*, Masson, Paris, 1983 MR**697382****[9]**J. A. Burns, Z. Y. Liu, and S. Zheng,*On the energy decay of a linear thermoelastic bar*, J. Math. Anal. Appl.**179**, 574-591 (1993) MR**1249839****[10]**G. Chen,*Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain*, J. Math. Pures Appl.**58**, 249-273 (1979) MR**544253****[11]**F. Conrad and B. Rao,*Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback*, Asymptotic Anal.**7**, 159-177 (1993) MR**1226972****[12]**C. M. Dafermos,*On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity*, Arch. Rational Mech. Anal.**29**, 241-271 (1968) MR**0233539****[13]**R. Dautray and J. L. Lions,*Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2, Functional and Variational Methods*, Springer-Verlag, Berlin, 1992 MR**969367****[14]**P. Grisvard,*Singularities in Boundary Value Problems*, Masson, Paris, 1992 MR**1173209****[15]**P. Grisvard,*Elliptic Problems in Nonsmooth Domains*, Pitman, London, 1985 MR**775683****[16]**P. Grisvard,*Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités*, J. Math. Pures Appl.**68**, 215-259 (1989) MR**1010769****[17]**S. W. Hansen,*Exponential energy decay in a linear thermoelastic rod*, J. Math. Anal. Appl.**167**, 429-442 (1992) MR**1168599****[18]**M. A. Horn,*Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity*, J. Math. Anal. Appl.**223**, 126-150 (1998) MR**1627344****[19]**M. A. Horn,*Sharp trace regularity for the solutions of the equations of dynamic elasticity*, J. Math. Systems Estim. Control**8**(2), 217-219 (1998) MR**1651449****[20]**J. U. Kim,*On the energy decay of a linear thermoelastic bar and plate*, SIAM J. Math. Anal.**23**, 889-899 (1992) MR**1166563****[21]**V. Komornik,*Exact Controllability and Stabilization: The Multiplier Method*, John Wiley and Sons, Masson, Paris, 1994 MR**1359765****[22]**V. Komornik and B. Rao,*Boundary stabilization of compactly coupled wave equations*, Asymptotic Anal.**14**, 339-359 (1997) MR**1461124****[23]**V. Komornik and E. Zuazua,*A direct method for the boundary stabilization of the wave equation*, J. Math. Pures Appl.**69**, 33-54 (1990) MR**1054123****[24]**A. D. Kovalenko,*Thermoelasticity, Basic Theory and Applications*, Wolters-Noordhoff Publishing, Gröningen, Netherlands, 1969**[25]**J. Lagnese,*Decay of solutions of wave equations in a bounded region with boundary dissipation*, J. Differential Equations**50**, 163-182 (1983) MR**719445****[26]**J. Lagnese,*Boundary stabilization of linear elastodynamic systems*, SIAM J. Control Optim.**21**, 968-984 (1983) MR**719524****[27]**J. Lagnese,*Boundary Stabilization of Thin Plates*, SIAM Studies in Applied Mathematics, vol. 10, SIAM Publications, Philadelphia, 1989 MR**1061153****[28]**J. Lagnese,*Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary*, Nonlinear Anal.**16**, 35-54 (1991) MR**1086824****[29]**J. Lagnese and G. Leugering,*Uniform stabilization of a nonlinear beam by nonlinear boundary feedback*, J. Differential Equations**91**, 355-388 (1991) MR**1111180****[30]**J. Lagnese and J. L. Lions,*Modelling Analysis and Control of Thin Plates*, Masson, Paris, 1989 MR**953313****[31]**I. Lasiecka,*Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary*, J. Differential Equations**79**, 340-381 (1989) MR**1000694****[32]**I. Lasiecka and D. Tataru,*Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping*, Differential Integral Equations**6**, 507-533 (1993) MR**1202555****[33]**G. Lebeau and E. Zuazua,*Sur la décroissance non uniforme de l'énérgie dans le système de la thermoélasticité linéaire*, C. R. Acad. Sci. Paris Sér. I. Math.**324**, 409-415 (1997) MR**1440958****[34]**G. Leugering,*On boundary feedback stabilization of a viscoelastic membrane*, Dynam. Stability Systems**4**, 71-79 (1989) MR**1023012****[35]**G. Leugering,*On boundary feedback stabilization of a viscoelastic beam*, Proc. Roy. Soc. Edinburgh, Sect. A**114**, 57-69 (1990)**[36]**J. L. Lions and E. Magenes,*Non-homogeneous Boundary Value Problems and Applications, vols. I and II*, Springer-Verlag, New York, 1972 MR**0350178****[37]**W. J. Liu,*Partial exact controllability and exponential stability of the higher-dimensional linear thermoelasticity*, ESAIM Contrôle Optim. Calc. Var.**3**, 23-48 (1998) MR**1610226****[38]**W. J. Liu,*Exact Controllability for Some Partial Differential Equations of Evolutional Type*, Ph.D. Thesis, University of Wollongong, Australia, 1997**[39]**W. J. Liu,*The exponential stabilization of the higher-dimensional linear thermoviscoelasticity*, J. Math. Pures Appl.**77**, 355-386 (1998) MR**1623383****[40]**Z. Liu and S. Zheng,*Exponential stability of the semigroup associated with a thermoelastic system*, Quart. Appl. Math.**LI**, 535-545 (1993) MR**1233528****[41]**W. J. Liu and E. Zuazua,*Decay rates for dissipative wave equations*, Ricerche de Matematica**48**, 61-75 (1999) MR**1765677****[42]**G. P. Menzala and E. Zuazua,*Explicit exponential decay rates for solutions of von Kármán's system of thermoelastic plates*, C. R. Acad. Sci Paris Sér. I Math.**324**, 49-54 (1997)**[43]**G. P. Menzala and E. Zuazua,*Energy decay rates for the Von Kármán system of thermoelastic plates*, Differential Integral Equations, to appear.**[44]**K. Narukawa,*Boundary value control of thermoelastic systems*, Hiroshima Math. J.**13**, 227-272 (1983) MR**707182****[45]**L. A. F. Oliveira,*Exponential decay in thermoelasticity*, Commun. Appl. Anal.**1**, 113-118 (1997) MR**1453945****[46]**J. E. M. Rivera,*Decomposition of the displacement vector field and decay rates in linear thermoelasticity*, SIAM J. Math. Anal.**24**, 390-406 (1993) MR**1205533****[47]**J. E. M. Rivera,*Asymptotic behaviour in n-dimensional thermoelasticity*, Appl. Math. Lett.**10**, 47-53 (1997) MR**1471316****[48]**J. E. M. Rivera and M. L. Oliveira,*Stability in inhomogeneous and anisotropic thermoelasticity*, Boll. Un. Mat. Ital. A A (7)**11**, 115-127 (1997) MR**1438361****[49]**W. Rudin,*Real and Complex Analysis*, second edition, McGraw-Hill, Inc., New York, 1974 MR**0344043****[50]**H. K. Wang and G. Chen,*Asymptotic behavior of solutions of the one-dimensional wave equation with a nonlinear boundary stabilizer*, SIAM J. Control Optim.**27**, 758-775 (1989) MR**1001918****[51]**E. Zuazua,*Uniform stabilization of the wave equation by nonlinear boundary feedback*, SIAM J. Control Optim. (2)**28**, 466-477 (1990) MR**1040470**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
74F05,
35B35,
35Q72,
74M05

Retrieve articles in all journals with MSC: 74F05, 35B35, 35Q72, 74M05

Additional Information

DOI:
https://doi.org/10.1090/qam/1828455

Article copyright:
© Copyright 2001
American Mathematical Society