Conical quantum billiard revisited

Author:
Richard L. Liboff

Journal:
Quart. Appl. Math. **59** (2001), 343-351

MSC:
Primary 81Q50; Secondary 33C45, 35J25, 35Q40

DOI:
https://doi.org/10.1090/qam/1828457

MathSciNet review:
MR1828457

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Eigenstates of a particle confined to a cone of finite length capped by a spherical surface element are derived. A countable infinite set of solutions is obtained corresponding to integer azimuthal and orbital quantum numbers . These solutions apply to a discrete subset of the domain of half vertex angles, . For arbitrary real orbital quantum numbers, , solutions are given in terms of the hypergeometric function, with , and are valid in the domain, . Eigenstates are either nondegenerate or two-fold degenerate. Numerical examples of both classes of solutions are included. For the case , the ground-state wavefunction and eigenenergy are

**[1]**Richard L. Liboff,*The polygon quantum-billiard problem*, J. Math. Phys.**35**(1994), no. 2, 596–607. MR**1257535**, https://doi.org/10.1063/1.530874**[2]**Richard L. Liboff,*Circular-sector quantum-billiard and allied configurations*, J. Math. Phys.**35**(1994), no. 5, 2218–2228. MR**1271917**, https://doi.org/10.1063/1.530547**[3]**Giovanni Alessandrini,*Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains*, Comment. Math. Helv.**69**(1994), no. 1, 142–154. MR**1259610**, https://doi.org/10.1007/BF02564478**[4]**Mark A. Pinsky,*The eigenvalues of an equilateral triangle*, SIAM J. Math. Anal.**11**(1980), no. 5, 819–827. MR**586910**, https://doi.org/10.1137/0511073**[5]**Antonios D. Melas,*On the nodal line of the second eigenfunction of the Laplacian in 𝑅²*, J. Differential Geom.**35**(1992), no. 1, 255–263. MR**1152231****[6]**J. B. Keller and S. I. Rubinow,*Asymptotic solution of eigenvalue problems*, Ann. Phys.**9**, 24-75 (1960)**[7]**Richard L. Liboff,*Conical quantum billiard*, Lett. Math. Phys.**42**(1997), no. 4, 389–391. MR**1487507**, https://doi.org/10.1023/A:1007470206508**[8]**F. A. Cotton,*Chemical Application of Group Theory*, Wiley, 3rd ed., New York, 1990**[9]**John David Jackson,*Classical electrodynamics*, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1975. MR**0436782****[10]**R. L. Liboff,*Introductory Quantum Mechanics*, 3rd ed., Section 10.3, Addison Wesley, Menlo Park, CA, 1998**[11]**R. Courant and D. Hilbert,*Methods of Mathematical Physics*, Vol. 1, Wiley Interscience, New York, 1966**[12]**Eugene Jahnke and Fritz Emde,*Tables of Functions with Formulae and Curves*, Dover Publications, New York, N. Y., 1945. 4th ed. MR**0015900****[13]**Z. X. Wang and D. R. Guo,*Special functions*, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. Translated from the Chinese by Guo and X. J. Xia. MR**1034956****[14]**Wilhelm Magnus and Fritz Oberhettinger,*Formulas and Theorems for the Special Functions of Mathematical Physics*, Chelsea Publishing Company, New York, N.Y., 1949. Translated by John Wermer. MR**0029000****[15]**M. Abramowitz and I. Stegun,*Higher Transcendental Functions*, Dover, New York, 1964

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
81Q50,
33C45,
35J25,
35Q40

Retrieve articles in all journals with MSC: 81Q50, 33C45, 35J25, 35Q40

Additional Information

DOI:
https://doi.org/10.1090/qam/1828457

Article copyright:
© Copyright 2001
American Mathematical Society