Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Multivalued solutions to the eikonal equation in stratified media

Authors: S. Izumiya, G. T. Kossioris and G. N. Makrakis
Journal: Quart. Appl. Math. 59 (2001), 365-390
MSC: Primary 35Q60; Secondary 35B40, 35C20, 35J10, 58J47, 86A15
DOI: https://doi.org/10.1090/qam/1828459
MathSciNet review: MR1828459
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we study the geometric properties of the multivalued solutions to the eikonal equation and we give the appropriate classification theorems. Our motivation stems from geometrical optics for approximating high frequency waves in stratified media. We consider the case of a fixed Hamiltonian imposed by the medium, and we present the geometric framework that describes the geometric solutions, using the notion of Legendrian immersions with an initial point source or an initial smooth front. Then, we study the singularities of the solutions in the case of a smooth or piecewise Hamiltonian in a boundaryless stratified medium. Finally, we study the singularities of the solutions in a domain with a boundary that describes the propagating field in a waveguide.

References [Enhancements On Off] (What's this?)

  • [ABG] R. Abgrall and J. D. Benamou, Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued travel-time field in the marmousi model, INRIA Tech. Rep. 3019 (1997)
  • [AK] G. Avila and J. Keller, The high-frequency asymptotic field of a point source in an inhomogeneous medium, Comm. Pure Appl. Math. XVI, 363-381 (1963) MR 0164133
  • [AN] V. I. Arnol'd and S. P. Novikov (Eds.), Dynamical Systems IV, Symplectic Geometry, Encyclopedia of Math. Sci., Vol. 4, Springer, 1985 MR 1042758
  • [AND] V. B. Andeev, A. V. Demin, Yu. A. Kravtsov, M. V. Tinin, and A. P. Yarygin, The interferential integral method (a review), Radiophys. Quantum Electron. 31(N11), 907-921 (1988)
  • [ARN1] J. M. Arnold, Oscillatory integral theory for uniform representation of wave functions, Rad. Sci. 17(5), 1181-1191 (1982)
  • [ARN2] J. M. Arnold, Spectral synthesis of uniform wavefunctions, Wave Motion 8, 135-150 (1986) MR 830420
  • [AVH] V. I. Arnol'd, A. N. Varchenko, and S. M. Guiseĭn-Zade, Singularities of Differentiate Maps, Vol. 1, Birkhäuser-Verlag, Basel, 1985
  • [BEN] J. D. Benamou, Big ray tracing: Multivalued travel time field computation using viscosity solutions of the eikonal equation, J. Comput. Phys. 128, 463-474 (1996)
  • [B] V. B. Babich, The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium, USSR J. Comput. Math. Phys. 5(5), 949-951 (1965)
  • [BB] V. B. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory. Asymptotic Methods, Springer-Verlag, Berlin-Heidelberg, 1991 MR 1245488
  • [BKP] J. D. Benamou, T. Katsaounis, and B. Perthame, High frequency Helmholtz equation, geometrical optics and particle methods, preprint (1998)
  • [BR] L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York, 1980 MR 693455
  • [BH] N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals, Dover Publications Inc., New York, 1986 MR 863284
  • [BK] V. M. Babich and N. Y. Kirpichnikova, The Boundary-Layer Method in Diffraction Problems, Springer-Verlag, Berlin-Heidelberg, 1979 MR 555574
  • [BO] I. A. Bogaevskiĭ, Perestroikas of fronts in evolutionary families, Proc. of the Steklov Inst. of Math. 209, 57-72 (1995) MR 1422218
  • [CK] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering, Springer-Verlag, New York, 1992 MR 1183732
  • [CMP] V. Cĕrveny, I. A. Molotkov, and I. Psencik, Ray Method in Seismology, Univerzita Karlova, Praha, 1977
  • [DUI] J. J. Duistermaat, Oscillatory integrals, Lagrangian immersions and unfolding of singularities, Comm. Pure Appl. Math. XXVII, 207-281 (1974) MR 0405513
  • [FEO] E. Fatemi, B. Engquist, and S. Osher, Numerical solution of the high frequency asymptotic expansion for the scalar wave equation, J. Comput. Phys. 120(1), 145-155 (1995) MR 1345031
  • [GA] Yu. L. Gazaryan, On the Ray Approximation near Nonsingular Caustics, Dynamic Theory of Seismic Wave Propagation 5, LGU Press, Leningrad, 1961, pp. 73-92
  • [GS] V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, RI, 1977 MR 0516965
  • [GSC] V. Guillemin and D. Schaeffer, Remarks on a paper of D. Ludwig, Bull. Amer. Math. Soc. 79(2), 382-385 (1973) MR 0410050
  • [HA] A. Hanyga, Canonical functions of asymptotic diffraction theory associated with symplectic singularities, Symplectic Singularities and Geometry of Gauge Fields, Banach Center Publications, Volume 36, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997, pp. 57-71 MR 1458649
  • [HS] A. Hanyga and M. Seredyńska, Diffraction of pulses in the vicinity of simple caustics and caustic cusps, Wave Motion 14, 101-121 (1991) MR 1125293
  • [HO1] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, New York, 1983 MR 717035
  • [H02] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971) MR 0388463
  • [IZ] S. Izumiya, Perestroikas of optical wave fronts and graphlike Legendrian unfoldings, J. Differential Geometry 38, 485-500 (1993) MR 1243783
  • [JA] K. Jänich, Caustics and catastrophes, Math. Ann. 209, 161-180 (1974) MR 0350781
  • [JO] D. S. Jones, High-frequency refraction and diffraction in general media, Philos. Trans. Roy. Soc. A 255, 341-387 (1963) MR 0151115
  • [KA] M. Kazarian, Caustics $ D_{k}$ at points of interface between two media, Symplectic Geometry, London Math. Soc. Lecture Notes Series, vol. 192, 1993, pp. 115-125 MR 1297132
  • [KKM] T. Katsaounis, G. T. Kossioris, and G. N. Makrakis, Computation of high frequency fields near caustics, Tech. Rep. 98.7, IACM-FORTH (1998)
  • [KO1] Yu. A. Kravtsov and Yu. I. Orlov, Caustics, Catastrophes and Wave Fields, Springer Series on Wave Phenomena, Springer-Verlag, Berlin, 1993 MR 1723808
  • [K02] Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer Series on Wave Phenomena, vol. 6, Springer-Verlag, Berlin, 1990 MR 1113261
  • [KR] Yu. A. Kravtsov, Two new asymptotic methods in the theory of wave propagation in inhomogeneous media (review), Sov. Phys. Acoust. 14(1), 1-17 (1968)
  • [KU] V. V. Kucherenko, Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation, Theoret. Math. Phys. (English Translation) 1(3), 294-310 (1969) MR 0479166
  • [LU] D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. XIX, 215-250 (1966) MR 0196254
  • [LY] V. V. Lychagin, Local classification of non-linear first order partial differential equations, Russian Math. Surveys 30, 105-175 (1975)
  • [MA1] V. P. Maslov, Operational Methods, Mir Publishers, Moscow, 1976 MR 0512495
  • [MA2] V. P. Maslov, Theory of Perturbations and Asymptotic Methods, Dunod, Paris, 1972
  • [MF] V. P. Maslov and V. M. Fedoryuk, Semi-classical approximations in quantum mechanics, Contemp. Math. 5, D. Reidel, Dordrecht, 1981
  • [MSS] A. Mishchenko, V. Shatalov, and B. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer-Verlag, Berlin-Heidelberg, 1990 MR 1071736
  • [MY] O. M. Myasnichenko, Singularities of wave fronts on the interface between two media, St. Petersburg Math. J. 5, 789-807 (1994) MR 1246424
  • [RU] O. Runborg, Multiscale and Multiphase Methods for Wave Propagation, Doctoral Dissertation, Dept. Num. Anal. Comp. Sci., Roy. Inst. Techn. Stockholm, 1998
  • [SC] I. G. Scherbak, Boundary fronts and caustics and their metamorphosis, Singularities (J.-P. Brasselet, ed.), London Math. Soc. Lecture Note Series 201, 1994, pp. 363-373 MR 1295083
  • [SYM] W. Symes, A slowness matching finite difference method for travel times beyond transmission caustics, Tech. Rep., Rice Univ., 1997
  • [TC] I. Tolstoy and C. S. Clay, Ocean Acoustics. Theory and Experiment in Underwater Sound, American Institute of Physics, New York, 1966
  • [TS1] T. Tsukada, Reticular Lagrangian singularities, Asian J. Math. 1, 572-622 (1997) MR 1604926
  • [TS2] T. Tsukada, Stability of optical caustics with r-corners, Hokkaido Math. J. 27, 633-650 (1998) MR 1662960
  • [V1] B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1989 MR 1054376
  • [V2] B. R. Vainberg, Quasiclassical approximation in stationary scattering problems, Funct. Anal. Appl. 11, 247-257 (1977) MR 0492960
  • [WA] G. Wassermann, Stability of caustics, Math. Ann. 216, 43-50 (1975) MR 0372912
  • [WED] R. Weder, Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media, Springer-Verlag, New York, 1991 MR 1082152

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q60, 35B40, 35C20, 35J10, 58J47, 86A15

Retrieve articles in all journals with MSC: 35Q60, 35B40, 35C20, 35J10, 58J47, 86A15

Additional Information

DOI: https://doi.org/10.1090/qam/1828459
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society