Energy decay for hyperbolic thermoelastic systems of memory type

Authors:
Luci Harue Fatori and Jaime E. Muñoz Rivera

Journal:
Quart. Appl. Math. **59** (2001), 441-458

MSC:
Primary 74F05; Secondary 35B35, 35B40, 35L20, 35Q72, 74H40

DOI:
https://doi.org/10.1090/qam/1848527

MathSciNet review:
MR1848527

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the hyperbolic thermoelastic system, which is obtained when, instead of Fourier's law for the heat flux relation, we follow the linearized model proposed by Gurtin and Pipkin concerning the memory theory of heat conduction. In this case the thermoelastic model is fully hyperbolic. We show that the linear system is well posed and that the solution decays exponentially to zero as time goes to infinity.

**[1]**B. D. Coleman and M. E. Gurtin,*Equipresence and constitutive equations for rigid heat conductors*, Z. Angew. Math. Phys.**18**, 199-208 (1967) MR**0214334****[2]**C. M. Dafermos,*An abstract Volterra equation with applications to linear viscoelasticity*, Journal of Differential Equations**7**, 554-569 (1970) MR**0259670****[3]**G. Dassios and F. Zafiropoulos,*Equipartition of energy in linearized*3-D*viscoelasticity*, Quart. Appl. Math.**48**, 715-730 (1990) MR**1079915****[4]**M. Fabrizio and B. Lazzari,*On the existence and asymptotic stability of solutions for linearly viscoelastic solids*, Arch. Rational Mech. Anal.**116**, 139-152 (1991) MR**1143437****[5]**C. Giorgi and M. G. Naso,*On the exponential stability of linear non-Fourier thermoviscoelastic bar*, qquaderni del Seminario di Brescia**2/97**(1997)**[6]**M. E. Gurtin and A. C. Pipkin,*A general theory of heat conduction with finite wave speeds*, Arch. Rational Mech. Anal.**31**, 113-126 (1968) MR**1553521****[7]**J. E. Lagnese,*Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping*, International Series of Numerical Math.**91**, 211-235 (1989) MR**1033061****[8]**Z. Liu and S. Zheng,*On the exponential stability of linear viscoelasticity and thermoviscoelasticity*, Quart. Appl. Math.**54**, 21-31 (1996) MR**1373836****[9]**J. L. Lions,*Quelques méthodes de résolution des problèmes aux limites non linéaires*, Dunod, Paris, 1969**[10]**J. E. Muñoz Rivera,*Asymptotic behaviour of energy in linear thermoviscoelasticity*, Computational and Appl. Math.**11**, 45-71 (1992) MR**1185238****[11]**J. E. Muñoz Rivera,*Global smooth solutions for the Cauchy problem in nonlinear viscoelasticity*, Differential Integral Equations**7**, 257-273 (1994) MR**1250950****[12]**J. E. Muñoz Rivera,*Asymptotic behavior in linear viscoelasticity*, Quart. Appl. Math.**52**, 629-648 (1994)**[13]**J. E. Muñoz Rivera and E. Cabanillas,*Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels*, Comm. Math. Physics**177**, 583-602 (1996) MR**1385077****[14]**J. E. Muñoz Rivera, E. Cabanillas, and R. Barreto,*Decay rates for viscoelastic plates with memory*, Journal of Elasticity**44**, 61-87 (1996) MR**1417809****[15]**O. J. Staffans,*On a nonlinear hyperbolic Volterra Equation*, Siam J. Math. Anal.**11**, 793-812 (1980) MR**586908**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
74F05,
35B35,
35B40,
35L20,
35Q72,
74H40

Retrieve articles in all journals with MSC: 74F05, 35B35, 35B40, 35L20, 35Q72, 74H40

Additional Information

DOI:
https://doi.org/10.1090/qam/1848527

Article copyright:
© Copyright 2001
American Mathematical Society