A nonconvex scalar conservation law with trilinear flux

Authors:
Brian T. Hayes and Michael Shearer

Journal:
Quart. Appl. Math. **59** (2001), 615-635

MSC:
Primary 35L65; Secondary 35B25, 35L60

DOI:
https://doi.org/10.1090/qam/1866551

MathSciNet review:
MR1866551

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The focus of this paper is on traveling wave solutions of the equation

*undercompressive shocks*, in which the characteristics pass through the shock. The analysis is based on explicit solutions of the piecewise linear ordinary differential equation satisfied by traveling waves. The analytical results are illustrated by numerical solutions of the Riemann initial value problem, and are compared with corresponding explicit results for the case of a cubic flux function.

**[1]**R. Abeyaratne and J. K. Knowles,*Implications of viscosity and strain gradient effects for the kinetics of propagating phase boundaries in solids*, SIAM J. Appl. Math.**51**, 1205-1221 (1991) MR**1127848****[2]**B. T. Hayes and P. G. LeFloch,*Nonclassical shock waves: Scalar conservation laws*, Arch. Rat. Mech. Anal.**139**, 1-56 (1997) MR**1475777****[3]**B. T. Hayes and P. G. LeFloch,*Nonclassical shock waves and kinetic relations: Finite difference schemes*, SIAM J. Numer. Anal.**35**, 2169-2194 (1998) MR**1655842****[4]**B. T. Hayes and M. Shearer,*Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes*, Proc. Royal Soc. Edinburgh Sect. A**129**, 733-754 (1999) MR**1718538****[5]**E. Isaacson, D. Marchesin, and B. Plohr,*Transitional waves for conservation laws*, SIAM J. Math. Anal.**21**, 837-866 (1990) MR**1052875****[6]**D. Jacobs, W. McKinney, and M. Shearer,*Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation*, J. Differential Equations**116**, 448-467 (1995) MR**1318583****[7]**P. D. Lax,*Hyperbolic systems of conservation laws*II, Comm. Pure Appl. Math.**10**, 537-566 (1957) MR**0093653****[8]**A. Azevedo, D. Marchesin, B. Plohr, and K. Zumbrun,*Bifurcation of nonclassical viscous shock profiles from the constant state*, Comm. Math. Phys.**202**, 267-290 (1999) MR**1689983****[9]**M. Schulze and M. Shearer,*Undercompressive shocks for a system of hyperbolic conservation laws with cubic nonlinearity*, J. Math. Anal. Appl.**229**, 344-362 (1999) MR**1664281****[10]**M. Shearer and Y. Yang,*The Riemann problem for a system of conservation laws of mixed type with a cubic nonlinearity*, Proc. Royal Soc. Edinburgh Sect. A**125**, 675-699 (1995) MR**1357378****[11]**M. Slemrod,*Admissibility criteria for propagating phase boundaries in a van der Waals fluid*, Arch. Rat. Mech. Anal.**81**, 301-315 (1983) MR**683192****[12]**C. C. Wu,*New theory of MHD shock waves*, Viscous Profiles and Numerical Methods for Shock Waves (ed. M. Shearer), SIAM, Philadelphia, PA, 1991, pp. 209-236 MR**1142652**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
35B25,
35L60

Retrieve articles in all journals with MSC: 35L65, 35B25, 35L60

Additional Information

DOI:
https://doi.org/10.1090/qam/1866551

Article copyright:
© Copyright 2001
American Mathematical Society