A note on the persistence of leading -waves of tsunami

Author:
M. Kovalyov

Journal:
Quart. Appl. Math. **60** (2002), 1-10

MSC:
Primary 76B15; Secondary 86A05

DOI:
https://doi.org/10.1090/qam/1878256

MathSciNet review:
MR1878256

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a new class of -wave solutions for the KdV with the property that they periodically transform themselves from leading depression -waves to leading elevation -waves and back. We consider them as a possible model for the tsunami waves.

**[1]**J. M. Abreu and Seabra Santos,*Generation and propagation of tsunami produced by the movement of the ocean bed*, Annales Geophysicae, Atmospheres, Hydrospheres and Space Sciences**10**, No. 1-2 (1992)**[2]**M. J. Briggs and C. E. Synolakis,*Large scale model tests of tsunami run-up*, EOS, Wash.**73**, 266 (1992)**[3]**M. J. Briggs, C. E. Synolakis, G. S. Harkin, and D. R. Green,*Laboratory experiments of tsunami runup on a circular island*, PAGEOPH**144**, 3/4, 569-593 (1995)**[4]**G. F. Carrier,*On-shelf generation and coastal propagation*, Proc. IUGG/IOC Internat. Tsunami Sympos., Wakayama, Japan, 1993, pp. 23-40**[5]**G. F. Carrier and R. P. Shaw,*Response of narrow-mouthed harbors to tsunami*, Tsunami in The Pacific Ocean, East-West Center Press, Proceedings of the International Tsunami Symposium (1969)**[6]**V. Davletshin and D. D. Lappo,*Tsunami forces exerted on vertical cylindrical barriers*, Fluid Mechanics - Soviet Research,**15**, No. 3 (1986)**[7]**C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,*Korteweg-de Vries equation and generalizations. VI. Methods for exact solution*, Communications on Pure and Applied Mathematics**XXVII**, 97-133 (1974) MR**0336122****[8]**S. Ide, F. Imamura, Y. Yoshida, and K. Abe,*Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992*, Geophys. Res. Lett.**20**, 863-866 (1993)**[9]**T. Iwasaki,*Behaviour of tsunami waves*, Navigation**83**(1985)**[10]**V. P. Koryavov,*Electromagnetic fields associated with tsunami propagation*, Izvestiya Academy of Sciences USSR, Physics of the Solid Earth**28**, No. 2 (1992)**[11]**M. Kovalyov,*Basic motions of the Korteweg-de Vries equation*, Nonlinear Analysis, Theory, Methods and Applications**31**, 599-619 (1998) MR**1487849****[12]**M. Kovalyov,*Modulating properties of harmonic breather solutions of KdV*, Journal of Physics A**31**, 5117-5128 (1998) MR**1631440****[13]**M. Kovalyov,*On the structure of the two-soliton interaction for the Korteweg-de Vries equation*, Journal of Differential Equations**152**, 431-438 (1999) MR**1674573****[14]**P. L.-F. Liu, Y. S. Cho, M. J. Briggs, U. Kanoglu, and C. E. Synolakis,*Runup of solitary waves on a circular island*, Journal of Fluid Mechanics**302**, 259-285 (1995) MR**1360390****[15]**V. B. Matveev,*Asymptotics of the multipositon-soliton function of the Korteweg-de Vries equation and the supertransparency*, J. Math. Phys.**35**, 2955-2970 (1994) MR**1275482****[16]**R. Mazova and E. N. Pelinovskii,*Linear theory of tsunami wave runup on a beach*, Izvestiya Akademii Nauk SSSR, Fizika Atmosfery i Okeana**18**, No. 2 (1982)**[17]**R. E. Meyer,*On the shore singularity of water waves. I. The local model*, Phys. Fluids**29**, 3152-3163 (1986) MR**861941****[18]**R. E. Meyer,*On the shore singularity of water-waves theory. II. Small waves do not break on gentle beaches*, Phys. Fluids**29**, 3164-3173 (1986) MR**861942****[19]**T. Nakayata,*Boundary element analysis of non-linear water wave problems*, International Journal for Numerical Methods in Engineering**19**, No. 7 (1983)**[20]**S. Novikov, S. Manakov, L. Pitaevskii, and V. Zakharov,*Theory of Solitons, The Inverse Scattering Method*, Chapter 1, §5. Contemporary Soviet Mathematics, Consultants Bureau, 1984 MR**779467****[21]**Y. N. Pelinovski and T. G. Talipova,*Height variations of large-amplitude solitary waves in the near-shore zone*, Oceanology**17**, No. 1 (1997)**[22]**K. Satake, J. Bourgeois, K. Abe, Y. Tsuji, F. Imamura, Y. Io, H. Katao, E. Noguera, and F. Estrada,*Tsunami field survey of the 1992 Nicaragua Earthquake*, EOS, Transactions, AGO**74**, 145, 156 (1993)**[23]**C. E. Synolakis,*Are solitary waves the limiting waves in the long wave run-up?*, Proc. ASCE, 21st Conf. Coastal Engineering, Costa del Sol, Malaga, Spain, 1988, pp. 219-233**[24]**C. E. Synolakis,*The run-up of solitary waves*, Journal of Fluid Mechanics**185**(1987)**[25]**C. E. Synolakis, F. Imamura, Y. Tsuji, S. Matsutomi, B. Tinti, B. Cook, and M. Ushman,*Damage, conditions of east Jave tsunami of 1994 analyzed*, EOS, Transactions, American Geophysical Union**76**(26), 257 and 261-262 (1995)**[26]**S. Tadepalli and C. E. Synolakis,*Model for the leading waves of tsunamis*, Physical Review Letters**77**, 2141-2144 (1996)**[27]**S. Tadepalli and C. E. Synolakis,*The run-up of N-waves on sloping beaches*, Proceedings of the Royal Society of London, Series A**445**, 99-112 (1994)**[28]**G. B. Whitham,*Linear and Nonlinear Waves*, Chapter 13, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley and Sons, New York, 1974 MR**0483954****[29]**J. B. Williams and J. M. Jordan,*A laboratory model of a doubled-humpted wave impingent on a plane*, Sloping Beach. Tsunami in the Pacific Ocean, East-West Center Press, Proceedings of the International Symposium on Tsunami, 1969

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76B15,
86A05

Retrieve articles in all journals with MSC: 76B15, 86A05

Additional Information

DOI:
https://doi.org/10.1090/qam/1878256

Article copyright:
© Copyright 2002
American Mathematical Society