Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic and exact fundamental solutions in hereditary media with singular memory kernels


Authors: Andrzej Hanyga and M. Seredyńska
Journal: Quart. Appl. Math. 60 (2002), 213-244
MSC: Primary 35Q72; Secondary 35A08, 35B40, 74D05, 74J05
DOI: https://doi.org/10.1090/qam/1900491
MathSciNet review: MR1900491
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method for constructing time-domain asymptotic solutions of hyperbolic partial differential equations with delay, with singular memory kernels, is presented. The asymptotic solutions are expressed in terms of basis functions that are regularizations of a sequence of distributions related by fractional integration.


References [Enhancements On Off] (What's this?)

    M. Abramowitz and I. Stegun, Mathematical Tables, Dover, New York, 1970 J.-F. Allard and Y. Champoux, New empirical equations for sound propagation in rigid frame fibrous materials, J. Acoust. Soc. Amer. 91, 3346–3353 (1992) R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior, J. of Rheology, 133–155 (1986) J. G. Berryman, L. Thigpen, and R. C. Y. Chin, Bulk elastic wave propagation in partially saturated porous solids, J. Acoust. Soc. Amer. 84, 360–373 (1988)
  • M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Amer. 28 (1956), 179–191. MR 134057, DOI https://doi.org/10.1121/1.1908241
  • P. W. Buchen and F. Mainardi, Asymptotic expansions for transient viscoelastic waves, J. de Mécanique 14, 597–608 (1975) Y. Champoux and M. R. Stinson, On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors, J. Acoust. Soc. Amer. 92, 1120–1131 (1992) R. M. Christensen, Theory of Viscoelasticity: An Introduction, Academic Press, New York, 1971 R. Courant, Partial Differential Equations, Wiley Interscience Publishers, New York, 1962 C. F. Curtiss and R. B. Bird, A kinetic theory for polymer melts, I. The equation for the single-link orientational distribution function, J. Chem. Phys. 74, 2016–2025 (1981)
  • Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075
  • Gustav Doetsch, Einführung in Theorie und Anwendung der Laplace-Transformation, Birkhäuser Verlag, Basel-Stuttgart, 1976 (German). Ein Lehrbuch für Studierende der Mathematik, Physik und Ingenieurwissenschaft; Dritte Auflage; Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften-Mathematische Reihe, Band 24. MR 0454529
  • Mauro Fabrizio and Angelo Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1153021
  • W. Feller, On a generalization of Marcel Riesz’ potentials and the semigroups generated by them, in Medd. Lund Univ. Matematiska Seminaret, 1952, pp. 73–81. Volume dedicated to M. Riesz.
  • William Feller, An introduction to probability theory and its applications. Vol. II., 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
  • S. Gelinsky, S. A. Shapiro, T. Müller, and B. Gurevich, Dynamic poroelasticity of thinly layered structures, Internat. J. Solids and Structures 35, 1739–4751 (1998)
  • Rudolf Gorenflo and Francesco Mainardi, Random walk models for space-fractional diffusion processes, Fract. Calc. Appl. Anal. 1 (1998), no. 2, 167–191. MR 1656314
  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th edition, Academic Press, New York, 1994 B. Gurevich and S. L. Lopatnikov, Velocity and attenuation of elastic waves in finely layered porous rocks, Geophys. J. Internat. 121, 933–947 (1995) A. Hanyga, Asymptotic theory of wave propagation in viscoporoelastic media, in “Theoretical and Computational Acoustics ’97", Y.-C. Teng, E.-C. Shang, Y.-H. Pao, M. H. Shultz, and A. D. Pierce, eds., World Scientific, Singapore, 1999 A. Hanyga and V. E. Rok, An integro-differential wave equation and applications to wave propagation in micro-inhomogeneous porous media, J. Acoust. Soc. Amer. 107 (6), 2965–2972 (2000)
  • Andrzej Hanyga and Małgorzata Seredyńska, Asymptotic ray theory in poro- and viscoelastic media, Wave Motion 30 (1999), no. 2, 175–195. MR 1708130, DOI https://doi.org/10.1016/S0165-2125%2898%2900053-5
  • A. Hanyga and M. Seredyńska, Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media, I: Forward modeling, Geophys. J. Internat. 137, 319–335 (1994) A. Hanyga and M. Seredyńska, Thermodynamics and asymptotic theory of wave propagation in viscoporous media, Proc. 3rd Internat. Conf. on Computational and Theoretical Acoustics, Newark, NJ, July 14–18, 1997, 1999 M. Ya. Kelbert and I. Ya. Chaban, Relaxation and propagation of pulses in fluids, Izv. Ak. Nauk. Ser. Mechanics of Fluids and Gases 5, 153–160 (1986)
  • R. C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, Trans. ASME J. Appl. Mech. 51 (1984), no. 2, 299–307. MR 747787, DOI https://doi.org/10.1115/1.3167616
  • R. C. Koeller, Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics, Acta Mech. 58 (1986), no. 3-4, 251–264. MR 844882, DOI https://doi.org/10.1007/BF01176603
  • H. Kolsky, The propagation of stress pulses in viscoelastic solids, Philos. Mag. 8, 693–710 (1956)
  • Andreas Kreis and A. C. Pipkin, Viscoelastic pulse propagation and stable probability distributions, Quart. Appl. Math. 44 (1986), no. 2, 353–360. MR 856190, DOI https://doi.org/10.1090/S0033-569X-1986-0856190-4
  • A. A. Lokšin and V. E. Rok, Self-similar solutions of wave equations with time delay, Uspekhi Mat. Nauk 33 (1978), no. 6(204), 221–222 (Russian). MR 526028
  • A. A. Lokshin and V. E. Rok, Fundamental solutions of the wave equation with delayed time, Doklady AN SSSR, 239, 1305–1308 (1978)
  • A. A. Lokshin and Yu. V. Suvorova, Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyat′yu, Moskov. Gos. Univ., Moscow, 1982 (Russian). MR 676810
  • F. Mainardi and M. Tomirotti, Seismic pulse propagation with constant Q and stable probability distributions, Annali de Geofisica 40, 1311–1328 (1997)
  • Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. MR 1219954
  • A. Narain and D. D. Joseph, Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid, Rheol. Acta 21 (1982), no. 3, 228–250. MR 669373, DOI https://doi.org/10.1007/BF01515712
  • A. N. Norris, On the viscodynamic operator in Biot’s theory, J. Wave-Material Interaction 1, 365–380 (1986) P. G. Nutting, Deformation in relation to time, pressure and temperature, J. Franklin Institute 242, 449–458 (1946)
  • Martin Ochmann and Sergey Makarov, Representation of the absorption of nonlinear waves by fractional derivatives, J. Acoust. Soc. Amer. 94 (1993), no. 6, 3392–3399. MR 1252538, DOI https://doi.org/10.1121/1.407192
  • A. C. Pipkin, Lectures on Viscoelasticity Theory, 2nd edition, Springer-Verlag, New York, 1986
  • Allen C. Pipkin, Asymptotic behaviour of viscoelastic waves, Quart. J. Mech. Appl. Math. 41 (1988), no. 1, 51–69. MR 934693, DOI https://doi.org/10.1093/qjmam/41.1.51
  • J.-D. Polack, Time domain solution of Kirchhoff’s equation for sound propagation in viscothermal gases: a diffusion process, J. Acoustique 4, 17–67 (1991) Yu. N. Rabotnov, Creep Problems in Structural Elements, North-Holland, Amsterdam, 1969
  • Ju. N. Rabotnov, Elements of hereditary solid mechanics, “Mir”, Moscow, 1980. Translated from the Russian by M. Konyaeva [M. Konjaeva]. MR 563522
  • M. Renardy, Some remarks on the propagation and nonpropagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta 21 (1982), no. 3, 251–254. MR 669374, DOI https://doi.org/10.1007/BF01515713
  • Michael Renardy, William J. Hrusa, and John A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 919738
  • Lynn Rogers, Operators and fractional derivatives for viscoelastic constitutive equations, J. Rheology 27, 351–372 (1983) V. E. Rok, Time-domain representation of waves in media with frequency power law of dispersion, in Extended Abstracts 58th EAGE Conference and Technical Exhibition, Amsterdam, 3–7 June 1996, p. C008, 1996 Yu. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanisms of solids, Appl. Mech. Rev. 50, 15–67 (1997) A. R. Rzhanitsyn, Some problems of the mechanics of systems that are deformed in time, Gostekhizdat, Moscow, 1949
  • Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
  • G. L. Slonimsky, Laws of mechanical relaxation processes in polymers, J. Polymer Science C16, 1667–1672 (1967) W. Smit and H. de Vries, Rheological models containing fractional derivatives, Rheol. Acta, 6 525–534 (1970) M. R. Stinson and Y. Champoux, Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, J. Acoust. Soc. Amer. 91, 685–695 (1992) P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real material, J. Appl. Mechanics 51, 294–298 (1983) D. V. Widder, An Introduction to Transformation Theory, Academic Press, New York, 1971 D. K. Wilson, Relaxation-matched modelling of propagation through porous media, including fractal pore structure, J. Acoust. Soc. Amer. 94, 1136–1145 (1992)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q72, 35A08, 35B40, 74D05, 74J05

Retrieve articles in all journals with MSC: 35Q72, 35A08, 35B40, 74D05, 74J05


Additional Information

Article copyright: © Copyright 2002 American Mathematical Society