Asymptotic and exact fundamental solutions in hereditary media with singular memory kernels

Authors:
Andrzej Hanyga and M. Seredyńska

Journal:
Quart. Appl. Math. **60** (2002), 213-244

MSC:
Primary 35Q72; Secondary 35A08, 35B40, 74D05, 74J05

DOI:
https://doi.org/10.1090/qam/1900491

MathSciNet review:
MR1900491

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method for constructing time-domain asymptotic solutions of hyperbolic partial differential equations with delay, with singular memory kernels, is presented. The asymptotic solutions are expressed in terms of basis functions that are regularizations of a sequence of distributions related by fractional integration.

**[1]**M. Abramowitz and I. Stegun,*Mathematical Tables*, Dover, New York, 1970**[2]**J.-F. Allard and Y. Champoux,*New empirical equations for sound propagation in rigid frame fibrous materials*, J. Acoust. Soc. Amer.**91**, 3346-3353 (1992)**[3]**R. L. Bagley and P. J. Torvik,*On the fractional calculus model of viscoelastic behavior*, J. of Rheology, 133-155 (1986)**[4]**J. G. Berryman, L. Thigpen, and R. C. Y. Chin,*Bulk elastic wave propagation in partially saturated porous solids*, J. Acoust. Soc. Amer.**84**, 360-373 (1988)**[5]**M. A. Biot,*Theory of propagation of elastic waves in a fluid-saturated porous solid*.*II-Higher frequency range*, J. Acoust. Soc. Amer.**28**, 179-191 (1956) MR**0134057****[6]**P. W. Buchen and F. Mainardi,*Asymptotic expansions for transient viscoelastic waves*, J. de Mécanique**14**, 597-608 (1975)**[7]**Y. Champoux and M. R. Stinson,*On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors*, J. Acoust. Soc. Amer.**92**, 1120-1131 (1992)**[8]**R. M. Christensen,*Theory of Viscoelasticity: An Introduction*, Academic Press, New York, 1971**[9]**R. Courant,*Partial Differential Equations*, Wiley Interscience Publishers, New York, 1962**[10]**C. F. Curtiss and R. B. Bird,*A kinetic theory for polymer melts, I. The equation for the single-link orientational distribution function*, J. Chem. Phys.**74**, 2016-2025 (1981)**[11]**R. Dautray and J.-L. Lions,*Mathematical Analysis and Numerical Methods for Science and Technology*, vol. 5, Springer-Verlag, Berlin, 1992 MR**1156075****[12]**G. Doetsch,*Einführung in Theorie and Anwendung der Laplace Transformation*, Birkhäuser-Verlag, Basel, 1958 MR**0454529****[13]**M. Fabrizio and A. Morro,*Mathematical Problems in Linear Viscoelasticity*, SIAM, Philadelphia, 1992 MR**1153021****[14]**W. Feller,*On a generalization of Marcel Riesz' potentials and the semigroups generated by them*, in Medd. Lund Univ. Matematiska Seminaret, 1952, pp. 73-81. Volume dedicated to M. Riesz.**[15]**W. Feller,*Introduction to Probability Theory and its Applications*, vol. 2, John Wiley and Sons, New York, 1971 MR**0270403****[16]**S. Gelinsky, S. A. Shapiro, T. Müller, and B. Gurevich,*Dynamic poroelasticity of thinly layered structures*, Internat. J. Solids and Structures**35**, 1739-4751 (1998)**[17]**R. Gorenflo and F. Mainardi,*Random walk models for space-fractional diffusion processes*, Fractonal Calculus and Applied Analysis**1**, 161-191 (1998) MR**1656314****[18]**I. S. Gradshteyn and I. M. Ryzhik,*Table of Integrals, Series and Products*, 5th edition, Academic Press, New York, 1994**[19]**B. Gurevich and S. L. Lopatnikov,*Velocity and attenuation of elastic waves in finely layered porous rocks*, Geophys. J. Internat.**121**, 933-947 (1995)**[20]**A. Hanyga,*Asymptotic theory of wave propagation in viscoporoelastic media*, in ``Theoretical and Computational Acoustics '97", Y.-C. Teng, E.-C. Shang, Y.-H. Pao, M. H. Shultz, and A. D. Pierce, eds., World Scientific, Singapore, 1999**[21]**A. Hanyga and V. E. Rok,*An integro-differential wave equation and applications to wave propagation in micro-inhomogeneous porous media*, J. Acoust. Soc. Amer.**107**(6), 2965-2972 (2000)**[22]**A. Hanyga and M. Seredyńska,*Asymptotic ray theory in poro- and viscoelastic media*, Wave Motion**30**, 175-195 (1999) MR**1708130****[23]**A. Hanyga and M. Seredyńska,*Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media, I: Forward modeling*, Geophys. J. Internat.**137**, 319-335 (1994)**[24]**A. Hanyga and M. Seredyńska,*Thermodynamics and asymptotic theory of wave propagation in viscoporous media*, Proc. 3rd Internat. Conf. on Computational and Theoretical Acoustics, Newark, NJ, July 14-18, 1997, 1999**[25]**M. Ya. Kelbert and I. Ya. Chaban,*Relaxation and propagation of pulses in fluids*, Izv. Ak. Nauk. Ser. Mechanics of Fluids and Gases**5**, 153-160 (1986)**[26]**R. C. Koeller,*Applications of fractional calculus to the theory of viscoelasticity*, J. Appl. Mechanics**51**, 299-307 (1984) MR**747787****[27]**R. C. Koeller,*Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics*, Acta Mechanica**58**, 251-264 (1986) MR**844882****[28]**H. Kolsky,*The propagation of stress pulses in viscoelastic solids*, Philos. Mag.**8**, 693-710 (1956)**[29]**A. Kreis and A. C. Pipkin,*Viscoelastic pulse propagation and stable probability distributions*, Quart. Appl. Math.**44**, 353-360 (1986) MR**856190****[30]**A. A. Lokshin and V. E. Rok,*Automodel solutions of wave equations with time lag*, Russian Math. Surveys**33**, 243-244 (1978) MR**526028****[31]**A. A. Lokshin and V. E. Rok,*Fundamental solutions of the wave equation with delayed time*, Doklady AN SSSR,**239**, 1305-1308 (1978)**[32]**A. A. Lokshin and Yu. V. Suvorova,*Mathematical Theory of Wave Propagation in Media with Memory*, Moscow University Publ., Moscow, 1982 (in Russian) MR**676810****[33]**F. Mainardi and M. Tomirotti,*Seismic pulse propagation with constant Q and stable probability distributions*, Annali de Geofisica**40**, 1311-1328 (1997)**[34]**K. S. Miller and B. Ross,*An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley and Sons, New York, 1993 MR**1219954****[35]**A. Narain and D. D. Joseph,*Linearized dynamics for step jumps of velocity and displacement of shearing flows for a simple fluid*, Rheol. Acta,**21**, 228-250 (1982) MR**669373****[36]**A. N. Norris,*On the viscodynamic operator in Biot's theory*, J. Wave-Material Interaction**1**, 365-380 (1986)**[37]**P. G. Nutting,*Deformation in relation to time, pressure and temperature*, J. Franklin Institute**242**, 449-458 (1946)**[38]**M. Ochmann and S. Makarov,*Representation of absorption of non-linear waves by fractional derivatives*, J. Acoust. Soc. Amer.**94**, 3392-3399 (1993) MR**1252538****[39]**A. C. Pipkin,*Lectures on Viscoelasticity Theory*, 2nd edition, Springer-Verlag, New York, 1986**[40]**A. C. Pipkin,*Asymptotic behaviour of viscoelastic waves*, Quart. J. Mech. Appl. Math.**41**, 51-64 (1988) MR**934693****[41]**J.-D. Polack,*Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process*, J. Acoustique**4**, 17-67 (1991)**[42]**Yu. N. Rabotnov,*Creep Problems in Structural Elements*, North-Holland, Amsterdam, 1969**[43]**Yu. N. Rabotnov,*Elements of Hereditary Solid Mechanics*, Mir Publ., Moscow, 1980 MR**563522****[44]**M. Renardy,*Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids*, Rheol. Acta**21**, 251-254 (1982) MR**669374****[45]**M. Renardy, W. J. Hrusa, and J. A. Nohel,*Mathematical Problems in Viscoelasticity*, Longman Scientific and Technical, Essex, 1987 MR**919738****[46]**Lynn Rogers,*Operators and fractional derivatives for viscoelastic constitutive equations*, J. Rheology**27**, 351-372 (1983)**[47]**V. E. Rok,*Time-domain representation of waves in media with frequency power law of dispersion*, in Extended Abstracts 58th EAGE Conference and Technical Exhibition, Amsterdam, 3-7 June 1996, p. C008, 1996**[48]**Yu. A. Rossikhin and M. V. Shitikova,*Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanisms of solids*, Appl. Mech. Rev.**50**, 15-67 (1997)**[49]**A. R. Rzhanitsyn,*Some problems of the mechanics of systems that are deformed in time*, Gostekhizdat, Moscow, 1949**[50]**S. G. Samko, A.A. Kilbas, and O. I. Marichev,*Fractional Integrals and Derivatives*,*Theory and Applications*, Gordon and Breach, Amsterdam, 1993 MR**1347689****[51]**G. L. Slonimsky,*Laws of mechanical relaxation processes in polymers*, J. Polymer Science**C16**, 1667-1672 (1967)**[52]**W. Smit and H. de Vries,*Rheological models containing fractional derivatives*, Rheol. Acta,**6**525-534 (1970)**[53]**M. R. Stinson and Y. Champoux,*Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries*, J. Acoust. Soc. Amer.**91**, 685-695 (1992)**[54]**P. J. Torvik and R. L. Bagley,*On the appearance of the fractional derivative in the behavior of real material*, J. Appl. Mechanics**51**, 294-298 (1983)**[55]**D. V. Widder,*An Introduction to Transformation Theory*, Academic Press, New York, 1971**[56]**D. K. Wilson,*Relaxation-matched modelling of propagation through porous media, including fractal pore structure*, J. Acoust. Soc. Amer.**94**, 1136-1145 (1992)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q72,
35A08,
35B40,
74D05,
74J05

Retrieve articles in all journals with MSC: 35Q72, 35A08, 35B40, 74D05, 74J05

Additional Information

DOI:
https://doi.org/10.1090/qam/1900491

Article copyright:
© Copyright 2002
American Mathematical Society