Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Global solution to a phase field model with irreversible and constrained phase evolution

Authors: Fabio Luterotti, Giulio Schimperna and Ulisse Stefanelli
Journal: Quart. Appl. Math. 60 (2002), 301-316
MSC: Primary 35K65; Secondary 35K50, 47H20, 74N99, 80A22
DOI: https://doi.org/10.1090/qam/1900495
MathSciNet review: MR1900495
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note deals with a nonlinear system of PDEs describing some irreversible phase change phenomena that account for a bounded limit velocity of the phase transition process. An existence result is established by using time discretization, compactness arguments, and techniques of subdifferential operators.

References [Enhancements On Off] (What's this?)

  • [1] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984 MR 773850
  • [2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, NoordhofF, Leyden, 1976 MR 0390843
  • [3] G. Bonfanti, M. Frémond, and F. Luterotti, Global solution to a nonlinear system for irreversible phase changes, Adv. Math. Sci. Appl. 10, 1-24 (2000) MR 1769184
  • [4] G. Bonfanti, M. Frémond, and F. Luterotti, Local solutions to the full model of phase transitions with dissipation, Adv. Math. Sci. Appl. 11, 791-810 (2001) MR 1907467
  • [5] H. Brezis, Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Studies, vol. 5, North-Holland, Amsterdam, 1973 MR 0348562
  • [6] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal. 92, 205-245 (1986) MR 816623
  • [7] G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits, European J. Appl. Math. 9, 417-445 (1998) MR 1643668
  • [8] P. Colli, M. Frémond, and O. Klein, Global existence of a solution to phase field model for super-cooling, Nonlinear Anal. Real World Appl. 2, 523-539 (2001)
  • [9] P. Colli, F. Luterotti, G. Schimperna, and U. Stefanelli, Global existence for a class of generalized systems for irreversible phase changes, NoDEA Nonlinear Differential Equations Appl., 2001, to appear MR 1917373
  • [10] M. Frémond and A. Visintin, Dissipation dans le changement de phase. Surfusion. Changement de phase irreversible, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers. Sci. Terre 301, 1265-1268 (1985) MR 880589
  • [11] J. W. Jerome, Approximation of nonlinear evolution systems, Ser. Math. Sci. Engrg., no. 164, Academic Press, Orlando, 1983 MR 690582
  • [12] F. Luterotti, G. Schimperna, and U. Stefanelli, Existence result for a nonlinear model related to irreversible phase changes, $ M^{3}$ AS, Math. Models Methods Appl. Sci. 11, 809-825 (2001) MR 1842227
  • [13] F. Luterotti and U. Stefanelli, One dimensional results to the full model of phase transitions, Z. Anal. Anwendungen, 2001, to appear
  • [14] J. Simon, Compact sets in the space $ L^{p}\left( 0, T; B \right)$, Ann. Mat. Pura Appl. (4), 146, 65-96 (1987) MR 916688

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35K65, 35K50, 47H20, 74N99, 80A22

Retrieve articles in all journals with MSC: 35K65, 35K50, 47H20, 74N99, 80A22

Additional Information

DOI: https://doi.org/10.1090/qam/1900495
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society