A modified Ginzburg-Landau model for Josephson junctions in a ring

Authors:
E. Hill, J. Rubinstein and P. Sternberg

Journal:
Quart. Appl. Math. **60** (2002), 485-503

MSC:
Primary 35Q60; Secondary 35B27, 35J20, 82D55

DOI:
https://doi.org/10.1090/qam/1914438

MathSciNet review:
MR1914438

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Ginzburg-Landau functional to analyze SNS junctions in a one-dimensional ring. We compare several canonical scalings. The linearized problem is solved to obtain the phase transition curves. We compute the -limit of the functional in the different scalings. The interaction of several junctions is analyzed. We study the zero set of the order parameter for distinguished values of the flux. Finally, we compute the currents in the weakly nonlinear regime.

**[1]**H. Attouch,*Variational Convergence for Functions and Operators*, Pitman, Boston, MA, 1984 MR**773850****[2]**A. Baratoff, J. A. Blackburn and B. B. Schwarz,*Current-phase relationship in short superconducting weak links*, Phys. Rev. Lett.**16**, 1096-1099 (1970)**[3]**J. Berger and J. Rubinstein,*Topology of the order parameter in the Little Parks experiment*, Phys. Rev. Lett.**75**, 320-322 (1995)**[4]**J. Berger and J. Rubinstein,*Bifurcation analysis for phase transitions in nonuniform superconducting rings*, SIAM J. Appl. Math.**58**, 103-121 (1998) MR**1610025****[5]**J. Berger and J. Rubinstein,*The zero set of the order parameter wave function*, Comm. Math. Phys.**202**, 621-628 (1999) MR**1690956****[6]**S. J. Chapman,*Nucleation of superconductivity in decreasing fields*, I, European J. Appl. Math.**5**, 449-468 (1994) MR**1309734****[7]**S. J. Chapman, Q. Du and M. D. Gunzburger,*A Ginzburg Landau model of superconducting / normal junctions including Josephson junctions*, European J. Appl. Math.**6**, 97-114 (1996) MR**1331493****[8]**P. G. de Gennes,*Superconductivity of Metals and Alloys*, Addison-Wesley, 1989**[9]**Q. Du and J. Remski,*Simplified models for superconducting-normal-superconducting junctions and their numerical approximations*, European J. Appl. Math.**10**, 1-25 (1999) MR**1685818****[10]**B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M.P. Owen,*Nodel sets for ground-states of Schrödinger operators with zero magnetic field in non-simply connected domains*, Comm. Math. Phys.**202**, 629-649 (1999) MR**1690957****[11]**B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen,*Nodal sets, multiplicity and superconductivity in non-simply connected domains*, in*Connectivity and superconductivity*, eds. J. Berger and J. Rubinstein, Springer Lecture Notes in Physics, vol. M62, 2000**[12]**E. Hill,*A Ginzburg-Landau model for Josephson junctions in a ring*, Ph.D. thesis, Indiana University, July, 2001 MR**2702461****[13]**K. H. Hoffman, L. Jiang and W. Yu,*Models of superconducting-normal-superconducting junctions*, Math. Methods. Appl. Sci.**21**, 59-91 (1998) MR**1487827****[14]**K. Likharev,*Superconducting weak links*, Rev. Mod. Phys.**51**, 101-159 (1979)**[15]**W. A. Little and R. D. Parks,*Observation of quantum periodicity in the transition temperature of a superconducting cylinder*, Phys. Rev. Lett.**9**, 9-12 (1962)**[16]**M. Reed and B. Simon,*Methods of Modern Mathematical Physics IV: Analysis of Operators*, Academic Press, Inc., 1978 MR**0493421****[17]**J. Rubinstein and M. Schatzman,*Variational problems in multiply connected thin strips II: The asymptotic limit of the Ginzburg-Landau functional*, Arch. Rational Mech. Anal., to appear.**[18]**J. Rubinstein and P. Sternberg, in preparation.**[19]**M. Tinkham,*Introduction to Superconductivity*, McGraw Hill, New York, 1996

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q60,
35B27,
35J20,
82D55

Retrieve articles in all journals with MSC: 35Q60, 35B27, 35J20, 82D55

Additional Information

DOI:
https://doi.org/10.1090/qam/1914438

Article copyright:
© Copyright 2002
American Mathematical Society