Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Large-time stability of travelling waves for a class of fully nonlinear parabolic equations

Authors: Fabio Camilli and Manuela Molinari
Journal: Quart. Appl. Math. 60 (2002), 533-546
MSC: Primary 35K55; Secondary 35B35
DOI: https://doi.org/10.1090/qam/1914440
MathSciNet review: MR1914440
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove existence and $ {L^{1}}$ stability of travelling waves for a class of second-order nonlinear parabolic equations in divergence form. As a consequence of the previous result, we get stability in the $ {L^{\infty }}$ norm of travelling waves for a class of fully nonlinear second-order equations.

References [Enhancements On Off] (What's this?)

  • [Bre83] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Mathématiques Appliqueés pour la Matrise, Masson, Paris, 1983 MR 697382
  • [Don91] G. C. Dong, Nonlinear partial differential equations of second order, Translations of Mathematical Monographs, Vol. 95, American Mathematical Society, Providence, RI, 1991 MR 1134129
  • [FS98] H. Freistühler and D. Serre, $ L^{1}$ Stability of shock waves in scalar viscous conservation laws, Comm. Pure Appl. Math. 51, 291-301 (1998) MR 1488516
  • [GJK93] R. Gardner, C. K. R. T. Jones, and T. Kapitula, Stability of travelling waves for nonconvex scalar viscous conservation laws, Comm. Pure Appl. Math. 46, 505-526 (1993) MR 1211740
  • [IO58] A. Ilin and O. Oleinik, Behavior of solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk SSSR 120, 25-28 (1958) MR 0101396
  • [Mar96] P. Marcati, Weak Solutions to a Nonlinear Partial Differential Equation of Mixed Type, Differential Integral Equations 9, 827-848 (1996) MR 1401440
  • [MN94] A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity, Comm. Math. Phys. 165, 83-96 (1994) MR 1298944
  • [MN96] C. Mascia and R. Natalini, $ L^{1}$ Nonlinear stability of travelling waves for a hyperbolic system with relaxation, J. Differential Equations 13, 321-344 (1996) MR 1422120
  • [OR82] S. Osher and J. Ralston, $ L^{1}$ Stability of travelling waves with applications to convective porous media flow, Comm. Pure Appl. Math. 35, 737-751 (1982) MR 673828
  • [Ser98] D. Serre, $ L^{1}$ -Decay and Stability of Shock Profiles, Partial Differential Equations (Praha, 1998), pp. 312-321. Research Notes in Math., vol. 406, Chapman and Hall, Boca Raton, FL., 2000 MR 1713897
  • [Ser99] D. Serre, System of Conservation Laws, Cambridge University Press, Cambridge, 1999
  • [VH69] A. I. Volpert and S. I. Hudjaev, Cauchy problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik 7, 365-387 (1969) MR 0264232
  • [Wan92] L. Wang, On the regularity theory of fully nonlinear parabolic equations, Comm. Pure Appl. Math. 45, 255-262 (1992)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35K55, 35B35

Retrieve articles in all journals with MSC: 35K55, 35B35

Additional Information

DOI: https://doi.org/10.1090/qam/1914440
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society