Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The Riemann problem for an elastic string with a linear Hooke's law


Authors: Harald Hanche-Olsen, Helge Holden and Nils Henrik Risebro
Journal: Quart. Appl. Math. 60 (2002), 695-705
MSC: Primary 35L65; Secondary 35L67, 74H45, 74K05
DOI: https://doi.org/10.1090/qam/1939007
MathSciNet review: MR1939007
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We solve the Riemann problem for vibrations of an infinite, planar, perfectly elastic string with a linear relation between the string tension and the local stretching, i.e., with a linear Hooke's law. The motion is governed by a $ 4 \times 4$ system of conservation laws that is linearly degenerate in all wave families. Conservation of energy leads to $ {L^{2}}$ estimates that are used in the analysis.


References [Enhancements On Off] (What's this?)

  • [1] S. S. Antman. Equations for large vibrations of strings. Amer. Math. Monthly, 87:359-370, 1980. MR 567719
  • [2] S. S. Antman. Nonlinear Problems in Elasticity. Springer-Verlag, New York, 1995. MR 1323857
  • [3] C. Carasso, M. Rascle, and D. Serre. Étude d'un modéle hyperbolique en dynamique des câbles. M2AN Math. Model. Numer. Anal., 19:573-599, 1985. MR 826225
  • [4] G. F. Carrier. On the non-linear vibration problem of the elastic string. Quart. J. Appl. Math., 3:157-165, 1945. MR 0012351
  • [5] J. W. Craggs. Wave motion in plastic-elastic strings. J. Mech. Phys. Solids, 2:286-295, 1954. MR 0062629
  • [6] N. Cristescu. Spatial motion of elastic-plastic strings. J. Mech. Phys. Solids, 9:165-178, 1961. MR 0128172
  • [7] N. Cristescu. Dynamic Plasticity. North-Holland, Amsterdam, 1967.
  • [8] B. L. Keyfitz and H. C. Kranzer. A system of non-strictly hyperbolic conservation laws arising in elasticity theory. Arch. Rat. Mech. Anal., 72:219-241, 1980. MR 549642
  • [9] Ta-Tsien Li, D. Serre, and Hao Zhang. The generalized Riemann problem for the motion of elastic strings. SIAM J. Math. Anal., 23:1189-1203, 1992. MR 1177785
  • [10] D. Serre. Un modèle relaxé pour les câbles inextensibles. M2AN Math. Model. Numer. Anal., 25:465-481, 1991.
  • [11] M. Shearer. Elementary wave solutions of the equations describing the motion of an elastic string. SIAM J. Math. Anal., 16:447-459, 1985. MR 783972
  • [12] M. Shearer. The Riemann problem for the planar motion of an elastic string. J. Diff. Eq., 61:149-163, 1986. MR 823399
  • [13] B. Temple. Systems of conservation laws with invariant submanifolds. Trans. Amer. Math. Soc., 280:781-795, 1983. MR 716850
  • [14] H. F. Weinberger. A First Course in Partial Differential Equations. Xerox, Lexington, 1965.
  • [15] R. Young. Wave interactions in nonlinear elastic strings. University of Massachusetts, 2000.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L65, 35L67, 74H45, 74K05

Retrieve articles in all journals with MSC: 35L65, 35L67, 74H45, 74K05


Additional Information

DOI: https://doi.org/10.1090/qam/1939007
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society