Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Integral representation in the hodograph plane of compressible flow


Authors: Erik B. Hansen and George C. Hsiao
Journal: Quart. Appl. Math. 61 (2003), 73-88
MSC: Primary 35Q35; Secondary 35A08, 35C15, 35R35, 76N99
DOI: https://doi.org/10.1090/qam/1955224
MathSciNet review: MR1955224
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Compressible flow is considered in the hodograph plane. The linearity of the equation determining the stream function is exploited to derive a representation formula involving boundary data only, and a fundamental solution to the adjoint equation. For subsonic flow, an efficient algorithm for computing the fundamental solution is developed.


References [Enhancements On Off] (What's this?)

  • [1] L.Morino, Boundary integral equations in aerodynamics, Appl. Mech. Rev., 46, no. 8, 445-466, 1983
  • [2] C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1992. MR 1156495
  • [3] K. Oswatitsch, Die Geschwindigkeitsverteilung bei lokalen Überschallgebieten an flachen Profilen, Z. Angew. Math. Mech. 30 (1950), 17–24 (German, with French and Russian summaries). MR 0034180, https://doi.org/10.1002/zamm.19500300102
  • [4] Symposium transsonicum, International Union of Theoretical and Applied Mechanics, Aachen, Sept. 3-7, vol. 1962, Springer-Verlag, Berlin, 1964 (German). MR 0195346
  • [5] Symposium transsonicum, International Union of Theoretical and Applied Mechanics, Aachen, Sept. 3-7, vol. 1962, Springer-Verlag, Berlin, 1964 (German). MR 0195346
  • [6] M. J. Lighthill, The hodograph transformation in transsonic flow. I. Symmetrical channels, Proc. Roy. Soc. London. Ser. A. 191 (1947), 323–341. MR 0023682, https://doi.org/10.1098/rspa.1947.0118
  • [7] M. J. Lighthill, The hodograph transformation in transsonic flow. II. Auxiliary theorems on the hypergeometric functions 𝜓_{𝑛}(𝜏), Proc. Roy. Soc. London. Ser. A. 191 (1947), 341–351. MR 0023396, https://doi.org/10.1098/rspa.1947.0119
  • [8] M. J. Lighthill, The hodograph transformation in transsonic flow. III. Flow round a body, Proc. Roy. Soc. London. Ser. A. 191 (1947), 352–369. MR 0023683, https://doi.org/10.1098/rspa.1947.0120
  • [9] Ehud Shimborsky, Variational methods applied to the study of symmetric flows in Laval nozzles, Comm. Partial Differential Equations 4 (1979), no. 1, 41–77. MR 514719, https://doi.org/10.1080/03605307908820091
  • [10] Erik B. Hansen, Stokes flow down a wall into an infinite pool, J. Fluid Mech. 178, 243-256,
  • [11] Erik B. Hansen and Mark A. Kelmanson, Steady, viscous, free-surface flow on a rotating cylinder, J. Fluid Mech. 272 (1994), 91–107. MR 1289110, https://doi.org/10.1017/S0022112094004398
  • [12] Richard von Mises, Mathematical theory of compressible fluid flow, Applied mathematics and mechanics. Vol. 3, Academic Press, Inc., New York, N.Y., 1958. MR 0094996
  • [13] S. Nocilla, Sull'esistenza di flussi transonici continui attorne a profili alari ad arco cerchio, Atti della Academia delle Scienzi di Torino, 94, 796-822, 1960
  • [14] R. Courant and D. Hilbert, Methods in Mathematical Physics, Interscience Publishers, New York, 1962, Vol. II, p. 336
  • [15] John Crank, Free and moving boundary problems, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1984. MR 776227
  • [16] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 9th printing, 1970, pp. 562-564
  • [17] W. Gröbner and N. Hofreiter, Integraltafel, Zweiter Teil, Bestimmte Integrale, Springer, Wien, 5th ed., 1973, p. 148

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q35, 35A08, 35C15, 35R35, 76N99

Retrieve articles in all journals with MSC: 35Q35, 35A08, 35C15, 35R35, 76N99


Additional Information

DOI: https://doi.org/10.1090/qam/1955224
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society