Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A simple model for phase transitions: from the discrete to the continuum problem

Authors: S. Pagano and R. Paroni
Journal: Quart. Appl. Math. 61 (2003), 89-109
MSC: Primary 74N15; Secondary 49J45, 74G65, 82C26
DOI: https://doi.org/10.1090/qam/1955225
MathSciNet review: MR1955225
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study a one-dimensional model simulating the shear in a two-dimensional body. We analyse the discrete system and we deduce the continuum limit of the lattice model as the lattice parameter goes to zero. Different energies are introduced and linked together.

References [Enhancements On Off] (What's this?)

  • [1] J. M. Ball and R. D. James, Fine phase mixtures as minimisers of energy, Arch. Rational Mech. Anal. 100, 13-52 (1987) MR 906132
  • [2] J. M. Ball and R. D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Phil. Tran. R. Soc. Lond. A 338, 389-450 (1992)
  • [3] A. Braides, G. Dal Maso, and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Rational Mech. Anal., 146, 23-58 (1999) MR 1682660
  • [4] A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Mathematics and Mechanics of Solids, 7, issue 1, 41-66 (2002) MR 1900933
  • [5] A. Braides and M. S. Gelli, Limits of discrete systems with long-range interactions, Accepted by Journal of Convex Analysis MR 1970562
  • [6] C. I. Christov, G. A. Maugin, and M. Velarde, Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Physical Review E, 54, 3621-3638 (1996)
  • [7] G. Dal Maso, An introduction to $ \Gamma $-convergence, Birkhäuser, Boston, 1993 MR 1201152
  • [8] O. Iosefescu, C. Licht, and G. Michaille, Variational limit of a one-dimensional discrete and statistically homogeneous system of material points, Asymptotic Analysis, 28, 309-329 (2001) MR 1878798
  • [9] R. D. James, Wiggly Energies, Symposium in honour of J. L. Ericksen, Maryland, June 12-14, 1996
  • [10] G. A. Maugin and S. Cadet, Existence of solitary waves in martensitic alloys, Int. J. of Engng. Sci., 29, 243-258 (1991) MR 1094233
  • [11] G. A. Maugin, Nonlinear waves in elastic crystals, Oxford Mathematical Monographs, O.U.P., 1999 MR 1772390
  • [12] J. Novak and E. K. H. Salje, Simulated mesoscopic structures of a domain wall in a ferroelastic lattice, The European Physical Journal B, 4, 279-284 (1998)
  • [13] J. Novak and E. K. H. Salje, Surface structure of domain walls, J. Phys.: Condens. Matter, 10, 359-366 (1998)
  • [14] R. Paroni, From discrete to continuum: a Young measure approach, accepted by Z. Angew. Math. Phys. MR 1967332
  • [15] J. Pouget, Dynamics of patterns in ferroelastic-martensitic transformations. I. Lattice model, Physical Review B 43, 3575-3581 (1991)
  • [16] J. Pouget, Dynamics of patterns in ferroelastic-martensitic transformations. II. Quasicontinuum model, Physical Review B 43, 3582-3592 (1991)
  • [17] J. Pouget, Nonlinear dynamics of a two-dimensional lattice model for ferroelastic materials, Proceedings of the 8th International Symposium, Varna, Bulgaria, June 11-16, 1995
  • [18] G. Puglisi and L. Truskinovsky, Mechanics of a discrete chain with bi-stable elements, J. Mech. Phys. Solids 48, 1-27 (1999) MR 1727553
  • [19] X. Ren and L. Truskinovsky, Finite scale microstructures in nonlocal elasticity, J. Elasticity, to appear MR 1833329
  • [20] R. Rogers and L. Truskinovsky, Discretization and hysteresis, Physica B 233, 370-375 (1997)
  • [21] P. Rosenau, Dynamics of dense lattices, Physical Review B 36, 5868-5876 (1987) MR 914756
  • [22] L. Truskinovsky and G. Zanzotto, Ericksen's bar revisited: energy wiggles, J. Mech. Phys. Solids, 44, 1371-1408 (1996) MR 1400578

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74N15, 49J45, 74G65, 82C26

Retrieve articles in all journals with MSC: 74N15, 49J45, 74G65, 82C26

Additional Information

DOI: https://doi.org/10.1090/qam/1955225
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society