Asymptotic behavior of solutions to quasilinear hyperbolic equations with nonlinear damping

Authors:
Hailiang Li and Katarzyna Saxton

Journal:
Quart. Appl. Math. **61** (2003), 295-313

MSC:
Primary 35L60; Secondary 35B40, 35L65, 74D10, 74F05, 74H40

DOI:
https://doi.org/10.1090/qam/1976371

MathSciNet review:
MR1976371

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Coleman, B. D., and Neumann, D. C., Implication of a nonlinearity in the theory of second sound in solids,*Phys. Rev. B***32**, 1492-1498 (1988)**[2]**Dafermos, C. M., A system of hyperbolic conservation laws with frictional damping,*Z. Angew. Math. Phys*.**46**Special Issue, 294-307 (1995) MR**1359325****[3]**Hsiao, L., ``Quasilinear Hyperbolic System and Dissipative Mechanisms", World Scientific, Singapore, 1997. MR**1640089****[4]**Hsiao, L. and Liu, T.-P., Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,*Comm. Math. Phys*.**143**, 599-605 (1992) MR**1145602****[5]**Hsiao, L., and Liu, T.-P., Nonlinear diffusive phenomena of nonlinear hyperbolic systems,*Chin. Ann. of Math*.**14B**, 465-480 (1993) MR**1254543****[6]**Hsiao, L., and Luo, T., Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media,*J. Differential Equations***125**, 329-365 (1996) MR**1378760****[7]**Hsiao, L., and Luo, T., Nonlinear diffusive phenomena of entropy weak solutions for a system of quasilinear hyperbolic conservation laws with damping,*Quart. Appl. Math*.**56**, 173-198 (1998) MR**1604829****[8]**Hsiao, L., and Pan, P. H., Initial boundary value problem for the system of compressible adiabatic flow through porous media,*J. Differential Equations***159**, 280-305 (1999) MR**1726925****[9]**Hsiao, L., and Serre, D., Global existence of solutions for the system of compressible adiabatic flow through porous media,*SIAM J. Math. Anal*.**27**, 70-77 (1996) MR**1373147****[10]**Hsiao, L., and Serre, D., Large-time behavior of solutions for the system of compressible adiabatic flow through porous media,*Chin. Ann. of Math*.**16B**, 431-444 (1995)**[11]**Hsiao, L., and Tang, S. Q., Construction and qualitative behavior of solutions for a system of nonlinear hyperbolic conservation laws with damping,*Quart. Appl. Math*.**LIII**, 487-505 (1995) MR**1343463****[12]**Hsiao, L., and Tang, S. Q., Construction and qualitative behavior of solutions of perturbated Riemann problem for the system of one-dimensional isentropic flow with damping,*J. Differential Equations***123**, 480-503 (1995) MR**1362883****[13]**Li, H. L., The asymptotic behavior of solutions to the damped -system with boundary effects,*J. Partial Diff. Eqns*.**12**, 357-368 (1999) MR**1745407****[14]**Li, T. T., and Yu, W. C.,*Boundary value problem for quasilinear hyperbolic systems*, Duke Univ. Math. Ser. V 1985.**[15]**Luo, T., and Yang, T., The interaction of elementary waves for the isentropic Euler equation with frictional damping, preprint.**[16]**Luo, T., and Yang, T., Global existence of weak entropy solutions for damped p-system, to appear.**[17]**Marcati, P., and Mei, M., Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, preprint 1998 MR**1788427****[18]**Nishida, T., Nonlinear hyperbolic equations and related topics in fluid dynamics, Publications Mathematiques D'Orsay, 78.02, Dept. de mathematique, Paris-Sud (1978) MR**0481578****[19]**Nishihara, K., Convergence rates to nonlinear diffusion waves for solutions of systems of hyperbolic conservation laws with damping,*J. Differential Equations***131**, 171-188 (1996) MR**1419010****[20]**Nishihara, K., Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping,*J. Differential Equations***137**, 384-395 (1997) MR**1456603****[21]**Nishihara, K., and Yang, T., Boundary effect on asymptotic behavior of solutions to the -system with damping,*J. Differential Equations***156**(2), 439-458 (1999) MR**1705375****[22]**Nishihara, K., Wang, W. K., and Yang, T., -convergence rate to nonlinear diffusion waves for -system with damping,*J. Differential Equations***161**, 191-218 (2000) MR**1740362****[23]**Saxton, K., Saxton, R., and Kosinski, W., On second sound at the critical temperature,*Quart. Appl. Math*.**57**, 723-740 (1999) MR**1724302****[24]**Saxton, K., and Saxton, R., Nonlinearity and memory effects in low temperature heat propagation,*Arch. Mech*.**52**, 127-142 (2000)**[25]**Serre, D., and Xiao, L., Asymptotic behavior of large weak entropy solutions of the damped p-system,*J. Partial Diff. Eqns*.**10**, 355-368 (1997) MR**1486716****[26]**Slemrod, M., Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity,*Arch. Rat. Mech. Anal*.**76**, 97-133 (1981) MR**629700****[27]**Van Duyn, C. J., and Peletier, L. A., A class of similarity solutions of the nonlinear diffusion equation,*Nonlinear Anal*., T.M.A.**1**, 223 - 233 (1977) MR**511671****[28]**Wang, J-.H., and Li, C. Z., Global regularity and formation of singularities of solution for quasilinear hyperbolic system with dissipation,*Chinese Annals Math*.**9A**, 509-523 (1988)**[29]**Yang, T., Zhu C., and Zhao, H., Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms,*Proc. Roy. Soc. Edin*.**127A**, 1311-1324 (1997) MR**1489438****[30]**Zhao, H., Convergence to strong nonlinear diffusion waves for solutions of -system with damping,*J. Differential Equations*, submitted. MR**1844529**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L60,
35B40,
35L65,
74D10,
74F05,
74H40

Retrieve articles in all journals with MSC: 35L60, 35B40, 35L65, 74D10, 74F05, 74H40

Additional Information

DOI:
https://doi.org/10.1090/qam/1976371

Article copyright:
© Copyright 2003
American Mathematical Society