Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

More-or-less-uniform sampling and lengths of curves


Authors: Lyle Noakes and Ryszard Kozera
Journal: Quart. Appl. Math. 61 (2003), 475-484
MSC: Primary 65D05; Secondary 41A05, 51M25
DOI: https://doi.org/10.1090/qam/1999832
MathSciNet review: MR1999832
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: More-or-less-uniform samples are introduced and used to estimate lengths of smooth regular strictly convex curves in $ {\mathbb{R}^{2}}$. Quartic convergence is proved and illustrated by examples.


References [Enhancements On Off] (What's this?)

  • [1] L. Dorst and A. W. M. Smeulders, Discrete straight line segments: Parameters, primitives and properties, In: R. Melter, P. Bhattacharya, and A. Rosenfled (eds.), Contemp. Math., Vol. 119, Amer. Math. Soc., Providence, RI, 1991, pp. 45-62 MR 1113899
  • [2] R. Klette, Approximation and representation of 3D objects, In: R. Klette, A. Rosenfeld, and F. Sloboda (eds.), Advances in Digital and Computational Geometry, Springer, Singapore, 1998, pp. 161-194 MR 1649615
  • [3] R. Klette, V. Kovalevsky, and B. Yip, On the length estimation of digital curves, In: L. J. Latecki, R. A. Melter, D. M. Mount, and A. Y. Wu (eds.), SPIE Conference Proceedings Vision Geometry VIII, Denver, Colorado, 1999, pp. 52-63
  • [4] R. Klette, A. Rosenfeld, and F. Sloboda (eds.), Advances of Digital and Computational Geometry, Springer-Verlag, 1998 MR 1649610
  • [5] J. Milnor, Morse Theory, Annals. of Math. Studies, Vol. 51, Princeton University Press, Princeton, NJ, 1963 MR 0163331
  • [6] P. A. P. Moran, Measuring the length of a curve, Biometrika 53, 359-364 (1966) MR 0211574
  • [7] L. Noakes, R. Kozera, and R. Klette, Length estimation for curves with different samplings, In: G. Bertrand, A. Imiya, and R. Klette (eds.), Digital and Image Geometry, Lecture Notes in Computer Science, Vol. 2243, Springer-Verlag, Berlin Heidelberg, 2001 pp. 339-351 MR 2133156
  • [8] L. Noakes, R. Kozera, and R. Klette, Length estimation for curves with $ \epsilon $-uniform sampling, In: W. Skarbek (ed.), Proceedings of 9th International Conference on Computer Analysis of Images and Patterns, Warsaw, Poland, 2001. Lecture Notes in Computer Science, Vol. 2124, Springer-Verlag, Berlin Heidelberg, pp. 518-528 MR 2133156
  • [9] F. Sloboda, B. Zaťko, and J. Stoer, On approximation of planar one-dimensional continua, In: R. Klette, A. Rosenfeld, and F. Sloboda (eds.), Advances in Digital and Computational Geometry, Springer, Singapore, 1998, pp. 113-160 MR 1649614
  • [10] H. Steinhaus, Praxis der Rektifikation und zum Längenbegriff, Akad. Wiss. Leipzig. Berlin 82, 120-130 (1930)
  • [11] B. L. van der Waerden, Geometry and Algebra in Ancient Civilizations, Springer-Verlag, Berlin, 1983 MR 706258
  • [12] A. G. Werschulz and H. Woźniakowski, What is the complexity of surface integration?, J. Complexity 17, 442-466 (2001) MR 1843428
  • [13] K. Mørken and K. Scherer, A general framework for high-accuracy parametric interpolation, Math. of Comp. 66, No. 217, 237-260 (1997) MR 1372007

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65D05, 41A05, 51M25

Retrieve articles in all journals with MSC: 65D05, 41A05, 51M25


Additional Information

DOI: https://doi.org/10.1090/qam/1999832
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society