Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

$ L$-derivative of an approximate solution to $ \Phi '=\bold A(t)\Phi $: series and product formulae for left corrections


Authors: Igor Najfeld and William Lakin
Journal: Quart. Appl. Math. 61 (2003), 537-564
MSC: Primary 34A45; Secondary 34A30, 45D05
DOI: https://doi.org/10.1090/qam/1999836
MathSciNet review: MR1999836
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given an initial approximation $ {\Phi _0}$ to the fundamental matrix of solutions for $ \Phi ' = {\rm A}\left( t \right)\Phi $, it is shown that a left correction, $ \Gamma {\Phi _0}$, is locally more accurate than a right correction, $ {\Phi _0}\Gamma $. For each relative error function considered, there is a left correction $ \Gamma $ and the associated differential equation. The common feature is the same integrable part whose forcing function is the difference between L-derivatives of the exact and the initial solution.


References [Enhancements On Off] (What's this?)

  • [1] H. F. Baker, On the integration of linear differential equations, Proc. London Math. Soc. 35, 333-374 (1903) MR 1577004
  • [2] H. F. Baker, Alternants and continuous groups, Proc. London Math. Soc. (2nd Series) 3, 24-47 (1904) MR 1575931
  • [3] O. Bottema and B. Roth, Theoretical Kinematics, Dover Publ., 1990 MR 1107072
  • [4] S. C. Chu and F. T. Metcalf, On Gronwall's inequality, Proc. Amer. Math. Soc., vol 18, 439-440 (1967) MR 0212529
  • [5] J. D. Dollard and C. N. Friedman, Product Integration, Addison-Wesley, Reading, 1979 MR 552941
  • [6] F. Fer, Résolution de l'équation matricielle dU/dt = pU par produit infini d'exponentielles matricielles, Acad. Roy. Belg. Cl. Sci. Bull. Ser. 5, 44, 818-829 (1958) MR 0104009
  • [7] R. P. Feynman, An operator calculus having applications in quantum electrodynamics, Physical Review, 84, 108-128 (1951) MR 0044379
  • [8] R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some Applications to Dynamics and Differential Equations, The Macmillan Co., N.Y., 1946 MR 0019077
  • [9] F. R. Gantmacher, The Theory of Matrices (Vol. 2), Chelsea, Bronx, NY, 1959
  • [10] H. E. Gollwitzer, A note on a functional inequality, Proc. Amer. Math. Soc., vol 23, 642-647 (1969) MR 0247016
  • [11] H. W. Guggenheimer, Differential Geometry, Dover, New York, 1977 MR 0493768
  • [12] J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, 1969 MR 0419901
  • [13] F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie, Berichte uber die Verhandlungen der Koniglich Sächsischen Gessellschaft der Wissenshaften zu Leipzig (Math. Phys. Klasse), 58, 19-48 (1906)
  • [14] P. Henrici, Applied and Computational Complex Analysis, Vol 2. Wiley-Interscience, 1977 MR 0453984
  • [15] P. D. Lax, Linear Algebra, Wiley-Interscience, 1997 MR 1423602
  • [16] W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure and Appl. Math. VII, 649-673 (1954) MR 0067873
  • [17] R. K. Miller, Nonlinear Volterra Integral Equations, W. A. Benjamin, Inc. Menlo Park, California, 1971 MR 0511193
  • [18] P. C. Moan, J. A. Oteo, and J. Ros, On the existence of the exponential solution of linear differential systems, J. Phys. A: Math. Gen. 32, 5133-5139 (1999) MR 1723332
  • [19] I. Najfeld and T. F. Havel, Derivatives of the matrix exponential and their computation, Adv. Appl. Math., 16, 321-375, (1995) MR 1342832
  • [20] F. W. J. Olver, Asymptotics and Special Functions, Acad. Press, New York, 1974 MR 0435697
  • [21] G. Peano, Intégration par séries des équations différentielles linéaires, Math. Ann. 32, 450-456 (1888) MR 1510521
  • [22] M. C. Pease, III, Methods of Matrix Algebra, Academic Press, New York, 1965 MR 0207719
  • [23] L. B. Rail, Computational Solution of Nonlinear Operator Equations, John Wiley & Sons, 1969 MR 0240944
  • [24] W. T. Reid, Riccati Differential Equations, Academic Press, New York, 1972 MR 0357936
  • [25] J. A. Richards, Analysis of Periodically Time-Varying Systems, Springer-Verlag, 1983
  • [26] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, 1990 MR 1068530
  • [27] R. M. Wilcox, Exponential operators and parameter differentiation in quantum physics, J. Math. Phys. 8, 962-982 (1967) MR 0234689
  • [28] R. M. Wilcox, Bounds for Approximate Solutions to the Operator Differential Equation $ \dot {y}\left( t \right) = \\ M\left( t \right) Y\left( t \right)$; Applications to Magnus expansion and to $ \ddot u + \left[ {1 + f\left( t \right)} \right] u = 0$, J. Math. Anal. and Appl. 39, 92-111 (1972) MR 0304755

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34A45, 34A30, 45D05

Retrieve articles in all journals with MSC: 34A45, 34A30, 45D05


Additional Information

DOI: https://doi.org/10.1090/qam/1999836
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society