Uniform asymptotic solutions for lamellar inhomogeneities in piezoelectric solids

Authors:
Cristian Dascalu and Dorel Homentcovschi

Journal:
Quart. Appl. Math. **61** (2003), 657-682

MSC:
Primary 74F15; Secondary 74B05, 74G10, 74G70, 78A30

DOI:
https://doi.org/10.1090/qam/2019617

MathSciNet review:
MR2019617

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of a lamellar inhomogeneity of arbitrary shape embedded in a piezoelectric matrix of infinite extent. Uniform asymptotic solutions for the equations of elastostatics and electrostatics on this configuration are obtained. The first order terms, in the inhomogeneity thickness, are explicitly determined for piezoelectric inclusions, rigid inclusions of electric conductor, impermeable cracks, and cracks with inside electric field. We give real-form expressions of mechanical and electric fields at the interface and on the inhomogeneity axis. Detailed first order solutions are obtained for elliptic and lemon-shaped inhomogeneities. It is found that, while for elliptic piezoelectric inclusions the perturbation stresses and electric displacements at the inclusion ends have the same order as those given at infinity, for a lemon-shaped inclusion they are an order-of-magnitude smaller. Intensity factors are calculated for lemon-shaped cavities. It is shown that, when inside electric fields are considered, the stress intensity coefficients are influenced by the material anisotropy.

**[1]**Barnett, D. M. and Lothe, J., 1975,*Dislocations and line charges in anisotropic piezoelectric insulators*, Phys. Status Solidi B**67**, 105-111**[2]**Chung, M. Y. and Ting, T. C. T., 1996,*Piezoelectric solid with an elliptic inclusion or hole*, Int. J. Solids Structures**33**(23), 3343-3361 MR**1403690****[3]**Dascalu, C., 1997,*Electroelasticity equations and energy approaches to fracture*, Int. J. Engng. Sci.**35**, 1185-1196 MR**1488528****[4]**Dascalu, C. and Maugin, G. A., 1995,*On the dynamic fracture of piezoelectric materials*, Q. J. Mech. Appl. Mat.**48**, 237-251 MR**1330438****[5]**Dascalu, C. and Homentcovschi, D., 1999,*Uniform asymptotic solutions for lamellar inhomogeneities in anisotropic elastic solids*, SIAM J. Appl. Math.**60**, 18-42 MR**1740833****[6]**Geer, J. F. and Keller, J. B., 1968,*Uniform asymptotic solutions for potential flow around a thin airfoil and the electrostatic potential about a thin conductor*, SIAM J. Appl. Math.**16**, 75-101**[7]**Homentcovschi, D., 1979,*Conformal mapping of the domain exterior to a thin region*, SIAM J. Math. Anal.**10**, 1246-1257 MR**547810****[8]**Homentcovschi, D., 1982,*Uniform asymptotic solutions for the two-dimensional potential field problem with joining relations on the surface of a slender body*, Int. J. Engng. Sci.**20**, 753-767 MR**648548****[9]**Homentcovschi, D., 1984,*Uniform asymptotic solutions of two-dimensional problems of elasticity for the domain exterior to a thin region*, SIAM J. Appl. Math.**44**, 1-10 MR**729996****[10]**Homentcovschi, D. and Dascalu, C., 2000,*Uniform asymptotic solutions for lamellar inhomogeneities in plane elasticity*, J. Mech. Phys. Solids**48**, 153-173 MR**1727556****[11]**Liang, J., Han, J., Wang, B., and Du, S., 1995,*Electroelastic modelling of anisotropic piezoelectric materials with an elliptic inclusion*, Int. J. Solids Structures**32**(20), 2989-3000**[12]**Lothe, J. and Barnett, D. M., 1976,*Integral formalism for surface waves in piezoelectric crystals. Existence considerations*, J. Appl. Phys.**47**, 1799-1807**[13]**Lu, P., Tan, M. J., and Liew, K. M., 2000,*A further investigation of Green functions for a piezoelectric material with a cavity or a crack*, Int. J. Solids Structures**37**, 1065-1078**[14]**Maugin, G. A., 1988,*Continuum mechanics of electromagnetic solids*, North-Holland, Amsterdam MR**954611****[15]**Pak, Y. E., 1990,*Crack extension force in a piezoelectric material*, J. Appl. Mech.**57**, 647-653**[16]**Pak, Y. E., 1992,*Linear electroelastic fracture mechanics of piezoelectric materials*, Int. J. Fracture**54**, 79-100**[17]**Park, S. B. and Sun C. T., 1995,*Effect of electric field on fracture of piezoelectric ceramics*, Int. J. Fracture**70**, 203-216**[18]**Pisarenko, G. G., Chushko, V. M., and Kovalev, S. P., 1985,*Anisotropy of fracture toughness of piezoelectric ceramics*, J. Am. Ceram. Soc.**68**(5), 259-265**[19]**Sosa, H., 1991,*Plane problems in piezoelectric media with defects*, Int. J. Solids Structures**28**, 491-505**[20]**Sosa, H. and Khutoryansky, N., 1996,*New developments concerning piezoelectric materials with defects*, Int. J. Solids Structures**33**, 3399-3414 MR**1403691****[21]**Suo, Z., Kuo, C.-M., Barnett, D. M., and Willis, J. R., 1992,*Fracture mechanics for piezoelectric ceramics*, J. Mech. Phys. Solids**40**, 739-765 MR**1163485****[22]**Tiersten, H. F., 1969,*Linear piezoelectric plate vibrations*, Plenum Press, New York**[23]**Ting, T. C. T., 1988,*Some identities and the structure of*, Q. Appl. Math.**N**in the Stroh formalism of anisotropic elasticity**46**, 109-120 MR**934686****[24]**Ting, T. C. T., 1996,*Anisotropic elasticity: Theory and applications*, Oxford University Press, New York MR**1718696****[25]**Wu, C. H., 1994,*Regularly and singularly perturbed crack*, Q. Appl. Math.**52**, 529-543 MR**1292203****[26]**Zhang, T.-Y., Qian, C.-F., and Tong, P., 1998,*Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material*, Int. J. Solids Structures**35**(17), 2121-2149

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
74F15,
74B05,
74G10,
74G70,
78A30

Retrieve articles in all journals with MSC: 74F15, 74B05, 74G10, 74G70, 78A30

Additional Information

DOI:
https://doi.org/10.1090/qam/2019617

Article copyright:
© Copyright 2003
American Mathematical Society