Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness


Author: Elena Bonetti
Journal: Quart. Appl. Math. 61 (2003), 759-781
MSC: Primary 74N99; Secondary 35K85, 35Q72, 74H20
DOI: https://doi.org/10.1090/qam/2019622
MathSciNet review: MR2019622
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The mathematical formulation of a dissipative Frémond model for shape memory alloys is given in terms of an initial and boundary values problem. Uniqueness of sufficiently regular solutions is proved by use of a contracting estimates procedure in the case when quadratic dissipative contributions are neglected in the energy balance. The related existence result is only established while its proof will be detailed by the author in a subsequent paper.


References [Enhancements On Off] (What's this?)

  • [1] M. Achenback and I. Müller, Model for shape memory, J. Physique, C$ {_4}$ Suppl. 12, 12, 163-167 (1982)
  • [2] Claudio Baiocchi, Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert, Ann. Mat. Pura Appl. (4) 76 (1967), 233–304 (Italian). MR 0223697, https://doi.org/10.1007/BF02412236
  • [3] Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843
  • [4] Viorel Barbu, Pierluigi Colli, Gianni Gilardi, and Maurizio Grasselli, Existence, uniqueness, and longtime behavior for a nonlinear Volterra integrodifferential equation, Differential Integral Equations 13 (2000), no. 10-12, 1233–1262. MR 1785706
  • [5] Dominique Blanchard, Michel Frémond, and Augusto Visintin, Phase change with dissipation, Thermomechanical couplings in solids (Paris, 1986) North-Holland, Amsterdam, 1987, pp. 411–418. MR 934936
  • [6] Elena Bonetti, Global solution to a Frémond model for shape memory alloys with thermal memory, Nonlinear Anal. 46 (2001), no. 4, Ser. A: Theory Methods, 535–565. MR 1856593, https://doi.org/10.1016/S0362-546X(00)00131-0
  • [7] Elena Bonetti, Global solution to a nonlinear phase transition model with dissipation, Adv. Math. Sci. Appl. 12 (2002), no. 1, 355–376. MR 1909452
  • [8] N. Chemetov, Uniqueness results for the full Frémond model of shape memory alloys, Z. Anal. Anwendungen 17 (1998), no. 4, 877–892. MR 1669913, https://doi.org/10.4171/ZAA/856
  • [9] Philippe G. Ciarlet, Mathematical elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity. MR 936420
  • [10] Pierluigi Colli, Global existence for the three-dimensional Frémond model of shape memory alloys, Nonlinear Anal. 24 (1995), no. 11, 1565–1579. MR 1328584, https://doi.org/10.1016/0362-546X(94)00097-2
  • [11] Pierluigi Colli, Michel Frémond, and Augusto Visintin, Thermo-mechanical evolution of shape memory alloys, Quart. Appl. Math. 48 (1990), no. 1, 31–47. MR 1040232, https://doi.org/10.1090/qam/1040232
  • [12] P. Colli and J. Sprekels, Positivity of temperature in the general Frémond model for shape memory alloys, Contin. Mech. Thermodyn. 5 (1993), no. 4, 255–264. MR 1247344, https://doi.org/10.1007/BF01135814
  • [13] Pierluigi Colli and Jürgen Sprekels, Global solution to the full one-dimensional Frémond model for shape memory alloys, Math. Methods Appl. Sci. 18 (1995), no. 5, 371–385. MR 1323801, https://doi.org/10.1002/mma.1670180504
  • [14] P. Colli and J. Sprekels, Remarks on the existence for the one-dimensional Frémond model of shape memory alloys, Z. Angew. Math. Mech., 76, Suppl. 2, 413-416 (1996)
  • [15] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219. MR 0521262
  • [16] F. Falk, Elastic phase transitions and nonconvex energy functions, Free boundary problems: theory and applications, Vol. I (Irsee, 1987) Pitman Res. Notes Math. Ser., vol. 185, Longman Sci. Tech., Harlow, 1990, pp. 45–59. MR 1077032
  • [17] M. Frémond, Matériaux a mémoire de forme, C. R. Acad. Sci. Paris. Sér. II Méc. Phys. Chim. Sci. Univers. Sci. Terre, 304, 239-244 (1987)
  • [18] M. Frémond, Shape memory alloys. A thermomechanical model, in "Free Boundary Problems: theory and applications", vol. I-II (K. H. Hoffmann and J. Sprekels, eds.), Pitman Res. Notes Math. Ser. 185, Longman, London, 1990
  • [19] M. Frémond, Sur l'inégalité de Clausius-Duhem, C. R. Acad. Sci. Sér. II Paris, 311, 757-762 (1990)
  • [20] M. Frémond, The principle of virtual power in solid mechanics, in: Continuum thermomechanics: the art and the science of modelling material behavior (Paul Germain anniversary vol.), Kluwer Acad. Press, Boston, 2000
  • [21] M. Frémond, Nonsmooth thermo-mechanics, Springer-Verlag, Heidelberg, 2001
  • [22] M. Frémond and S. Miyazaki, Shape memory alloys, in: CISM Courses and Lectures No. 351, Springer-Verlag, New York, 1996
  • [23] Michel Frémond and Augusto Visintin, Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301 (1985), no. 18, 1265–1268 (French, with English summary). MR 880589
  • [24] P. Germain, Cours de mécanique des milieux continus, Masson et Cie, Éditeurs, Paris, 1973 (French). Tome I: Théorie générale. MR 0368541
  • [25] P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus. I. Théorie du second gradient, J. Mécanique 12 (1973), 235–274 (French, with English summary). MR 0423935
  • [26] G. Guénin, Alliages à memoire de forme, Techniques de l'ingénieur, M530, Paris, 1986
  • [27] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177
  • [28] J. J. Moreau, Sur les lois de frottement, de viscosité et de plasticité, in: C. R. Acad. Sci., 27, 608-611, Paris, 1970
  • [29] I. Müller, Pseudoelasticity in shape memory alloys, An extreme case of thermoelasticity, in: Proc. termoelasticità finita, Acc. Naz. dei Lincei, 1985
  • [30] I. Müller and K. Wilmanski, A model for phase transitions in pseudoelastic bodies, Nuovo Cimento B, 57, 283-318 (1980)
  • [31] M. Niezgódka and J. Sprekels, Existence of a solution for a mathematical model of structural phase transition in shape memory alloys, Math. Methods Appl. Sci., 10, 197-223 (1988)
  • [32] E. Patoor and M. Berveiller, Les alliages à mémoire de forme, Hermàs, Paris, 1990
  • [33] N. Shemetov, Existence result for the full one-dimensional Frémond model of shape memory alloys, Adv. Math. Sci. Appl. 8 (1998), no. 1, 157–172. MR 1623322
  • [34] Jürgen Sprekels, Shape memory alloys: mathematical models for a class of first order solid-solid phase transitions in metals, Control Cybernet. 19 (1990), no. 3-4, 287–308 (1991). Optimal design and control of structures (Jabłonna, 1990). MR 1118688

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74N99, 35K85, 35Q72, 74H20

Retrieve articles in all journals with MSC: 74N99, 35K85, 35Q72, 74H20


Additional Information

DOI: https://doi.org/10.1090/qam/2019622
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society