Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Stability of constant equilibrium state for dissipative balance laws system with a convex entropy

Authors: Tommaso Ruggeri and Denis Serre
Journal: Quart. Appl. Math. 62 (2004), 163-179
MSC: Primary 35L65; Secondary 35B35, 35L60, 82C05
DOI: https://doi.org/10.1090/qam/2032577
MathSciNet review: MR2032577
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a one-dimensional system of dissipative balance laws endowed with a convex entropy, we prove, under natural assumptions, that a constant equilibrium state is asymptotically $ {L^2}$-stable under a zero-mass initial disturbance. The technique is based on the construction of an appropriate Liapunov functional involving the entropy and a so-called compensation term.

References [Enhancements On Off] (What's this?)

  • [1] D. Amadori and G. Guerra, Global weak solutions for systems of balance laws, Appl. Math. Lett. 12, 123-127 (1999) MR 1751419
  • [2] G. Boillat, Sur l'Existence et la Recherche d'Équations de Conservation Supplémentaires pour les Systèmes Hyperboliques. C. R. Acad. Sci. Paris 278A, 909-912 (1974). Non Linear Fields and Waves. In CIME Course, Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Mathematics 1640, T. Ruggeri Ed., Springer-Verlag, 103-152 (1995)
  • [3] G. Boillat and T. Ruggeri, Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions, Arch. Rat. Mech. Anal. 137, 305-320 (1997) MR 1463797
  • [4] G. Boillat and T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy, Continuum Mech. Thermodyn. 10, 285 (1998) MR 1652858
  • [5] G.-Q. Chen, C. D. Levermore, and T.-P. Liu, Hyperbolic Conservation Laws with Stiff Relaxation Terms and Entropy, Comm. Pure and Appl. Math. 67, 787-830 (1994) MR 1280989
  • [6] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin (2000) MR 1763936
  • [7] C. Dafermos, A System of Hyperbolic Conservation Laws with Prictional Damping, ZAMP, Special issue 46, S294-S307 (1995) MR 1359325
  • [8] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA 68, 1686-1688 (1971) MR 0285799
  • [9] S. K. Godunov, An interesting class of quasilinear systems, Sov. Math. 2, 947-948 (1961) MR 0116141
  • [10] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Rat. Mech. Anal. 169, 89-117 (2003) MR 2005637
  • [11] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48, 235-276 (1995) MR 1322811
  • [12] S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh 106A, 169-194 (1987) MR 868821
  • [13] S. Kawashima, Y. Nikkuni, and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics, Analysis of systems of conservation laws (Aachen, 1997), Chapman, 87-127 (1997)
  • [14] T.-P. Liu, Hyperbolic Conservation Laws with Relaxation, Comm. Math. Phys. 108, 153-175 (1987). Nonlinear Waves for Quasilinear Hyperbolic-Parabolic Differential Equation. In CIME Course, Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Mathematics 1640, T. Ruggeri, Ed., Springer-Verlag, 1-47 (1996) MR 872145
  • [15] T. P. Liu and Y. Zeng, Large time behaviour of solutions for general quasi-linear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc. 599 (125) (1997) MR 1357824
  • [16] I. Müller and T. Ruggeri, Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy 37 (Second Edition), Springer-Verlag, New York (1998) MR 1632151
  • [17] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. H. Poincaré 34A, 65-84 (1981) MR 605357
  • [18] D. Serre, Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, Ann. IHP, Anal. non-linéaire 17, 169-192 (2000) MR 1753092
  • [19] D. Serre, The stability of constant equilibrium states in relaxation models, Annali dell'Università di Ferrara 48, 253-274 (2002) MR 1980835
  • [20] D. Serre, Matrices: Theory and Applications, Graduate Text in Maths. 216, Springer-Verlag, New York (2002) MR 1923507
  • [21] G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974) MR 0483954

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L65, 35B35, 35L60, 82C05

Retrieve articles in all journals with MSC: 35L65, 35B35, 35L60, 82C05

Additional Information

DOI: https://doi.org/10.1090/qam/2032577
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society