On a modified shock front problem for the compressible Navier-Stokes equations

Authors:
A. M. Blokhin and Yu. L. Trakhinin

Journal:
Quart. Appl. Math. **62** (2004), 221-234

MSC:
Primary 35Q30; Secondary 76L05, 76N10

DOI:
https://doi.org/10.1090/qam/2054597

MathSciNet review:
MR2054597

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the possibility of considering the shock wave in a compressible viscous heat conducting gas as a strong discontinuity on which surface the generalized Rankine-Hugoniot conditions hold. The corresponding linearized stability problem for a planar shock lacks boundary conditions; i.e., the shock wave in a viscous gas viewed as a (fictitious) strong discontinuity is like undercompressive shock waves in ideal fluids and, therefore, it is unstable against small perturbations. We propose such additional jump conditions so that the stability problem becomes well-posed and its trivial solution is asymptotically stable (by Lyapunov). The choice of additional boundary conditions is motivated by a priori information about steady-state solutions of the Navier-Stokes equations which can be calculated, for example, by the stabilization method. The established asymptotic stability of the trivial solution to the modified linearized shock front problem can allow us to justify, at least on the linearized level, the stabilization method that is often used, for example, for steady-state calculations for viscous blunt body flows.

**[1]**A. M. Blokhin,*Estimation of energy integral of a mixed problem for equations of gas dynamics with boundary conditions on the shock wave*, Sibirsk. Mat. Zh. (4)**22**, 23-51 (1981); English transl. in Siberian Math. J.**22**(1981) MR**624402****[2]**A. M. Blokhin,*Uniqueness of the classical solution of a mixed problem for equations of gas dynamics with boundary conditions on a shock wave*, Sibirsk. Mat. Zh. (5)**23**, 17-30 (1982); English transl. in Siberian Math. J.**23**(1982) MR**673535****[3]**A. M. Blokhin,*Energy integrals and their applications to gas dynamics problems*, Nauka, Novosibirsk, 1986 (in Russian)**[4]**A. M. Blokhin and Yu. L. Trakhinin,*Stability of strong discontinuities in fluids and MHD*, Handbook of Mathematical Fluid Dynamics, Vol. 1, S. J. Friedlander and D. Serre, eds, Elsevier, Amsterdam, 545-652 (2002) MR**1942469****[5]**A. M. Blokhin and Yu. L. Trakhinin,*On stability of shock waves in a compressible viscous heat conducting gas*, Acta Mechanica**150**, 267-275 (2001)**[6]**S. P. D'yakov,*On stability of shock waves*, Zh. Eksp. Teor. Fiz. (3)**27**, 288-296 (1954); English transl. in Atomic Energy Research Establishment AERE Lib./trans. (1956) MR**0066173****[7]**D. Gilbarg,*The existence and limit behavior of the one-dimensional shock layer*, Amer. J. Math.**73**, 256-274 (1951) MR**0044315****[8]**A. Yu. Kireev and V. L. Yumashev,*Numerical simulation of the viscous nonequilibrium air flow behind a strong shock wave*, Zh. Vychisl. Mat. Mat. Fiz. (10)**40**, 1563-1570 (2000); English transl. in Comput. Math. Math. Phys**40**(2000) MR**1844656****[9]**O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva,*Linear and quasi-linear equations of parabolic type*, Transl. Math. Monog.**23**, Amer. Math. Soc., Providence, RI, 1968**[10]**L. D. Landau and E. M. Lifshiz,*Fluid Mechanics*, Pergamon, New York and Oxford, 1997**[11]**A. Majda,*The stability of multi-dimensional shock frontÌs -- a new problem for linear hyperbolic equations*, Mem. Amer. Math. Soc.**41**, No. 275, Providence, RI, 1983**[12]**A. Majda,*The existence of multi-dimensional shock fronts*, Mem. Amer. Math. Soc.**43**, No. 281, Providence, RI, 1983**[13]**A. Majda,*Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables*, Springer-Verlag, New York, 1984 MR**748308****[14]**B. L. Rozhdestvenskii and N. N. Janenko,*Systems of quasilinear equations and their applications to gas dynamics*, Transl. Math. Monog.**55**, Amer. Math. Soc., Providence, RI, 1983 MR**694243****[15]**B. N. Srivastawa, M. J. Werle, and R. T. Davis,*Numerical solutions of hyperbolic viscous shock-layer equations*, AIAA J.**17**107-110 (1979)**[16]**J. C. Tannehill, T. L. Holst, and J. V. Rakich,*Numerical computation of two-dimensional viscous blunt body flows with an impinging shock*, AIAA J.**14**, 204-211 (1976)**[17]**G. A. Tirskij and S. V. Utyuzhnikov,*A comparison of the models of a thin and a complete viscous shock layer in the problem of the supersonic flow of a viscous gas past blunt cones*, Prikl. Mat. Mekh. (6)**53**, 963-969 (1989); English transl. in J. Appl. Math. Mech.**53**(1989)**[18]**K. Zumbrun and D. Serre,*Viscous and inviscid stability of multidimensional planar viscous shock waves*, Indiana Univ. Math. J.**48**, 937-992 (1999) MR**1736972**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q30,
76L05,
76N10

Retrieve articles in all journals with MSC: 35Q30, 76L05, 76N10

Additional Information

DOI:
https://doi.org/10.1090/qam/2054597

Article copyright:
© Copyright 2004
American Mathematical Society