Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic expansions of the Appell's function $ F_1$


Authors: Chelo Ferreira and José L. López
Journal: Quart. Appl. Math. 62 (2004), 235-257
MSC: Primary 41A60; Secondary 33C65, 65D20
DOI: https://doi.org/10.1090/qam/2054598
MathSciNet review: MR2054598
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The first Appell's hypergeometric function $ {F_1}\left( a, b, c, d; x, y \right)$ is considered for large values of its variables $ x$ and/or $ y$. An integral representation of $ {F_1}\left( a, b, c, d; x, y \right)$ is obtained in the form of a generalized Stieltjes transform. Distributional approach is applied to this integral to derive four asymptotic expansions of this function in increasing powers of $ 1/\left( 1 - x \right)$ and/or $ 1/\left( 1 - y \right)$. For certain values of the parameters $ a, b, c$ and $ d$, two of these expansions also involve logarithmic terms in the asymptotic variables $ 1 - x$ and/or $ 1 - y$. Coefficients of these expansions are given in terms of the Gauss hypergeometric function $ _2{F_1}\left( \alpha , \beta , \gamma ; x \right)$ and its derivative with respect to the parameter $ \alpha $. All of the expansions are accompanied by error bounds for the remainder at any order of the approximation. These error bounds are obtained from the error test and, as numerical experiments show, they are considerably accurate.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Buschman, Reduction formulas for Appell functions for special values of the variables, Indian J. Pure Appl. Math. 12, n.12 (1981) 1452-1455. MR 639096
  • [2] R. G. Buschman, Contiguous relations for Appell functions, Indian J. Math. 29, n.2 (1987) 165-171. MR 919894
  • [3] B. C. Carlson, Appell functions and multiple averages, SIAM J. Math. Anal. 2, n.3 (1971) 420-430. MR 0288320
  • [4] B. C. Carlson, Quadratic transformations of Appell functions, SIAM J. Math. Anal. 7, n.2 (1976) 291-304. MR 0393593
  • [5] B. C. Carlson, The hypergeometric function and the R-function near their branch points, Rend. Sem. Math. Univ. Politec. Torino, Fascicolo speciale (1985) 63-89. MR 850029
  • [6] F. D. Colavecchia, G. Gasaneo and C. R. Garibotti, Hypergeometric integrals arising in atomic collisions physics, J. Math. Phys. 38 n. 12 (1997) 6603-6612. MR 1483510
  • [7] F. D. Colavecchia, G. Gasaneo, and J. E. Miraglia, Numerical evaluation of Appell's $ {F_1}$ hypergeometric function, Comp. Phys. Comm. 138 (2001) 29-43. MR 1845839
  • [8] A. Erdelyi, Higher transcendental functions, Vol I. McGraw-Hill, New York, 1953.
  • [9] R. Estrada, Asymptotic Analysis: a Distributional Approach. Birkhauser, Boston, 1994. MR 1254657
  • [10] H. Exton, Laplace transforms of the Appell functions, J. Indian Acad. Math. 18, n. 1 (1996) 69-82. MR 1469885
  • [11] C. Ferreira and J. L. López, Asymptotic expansions of generalized Stieltjes transforms of algebraically decaying functions, Stud. Appl. Math. 108 (2002) 187-215 MR 1883093
  • [12] I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol I. Academic Press, New York, 1964. MR 0166596
  • [13] J. L. López, Asymptotic expansions of symmetric standard elliptic integrals, SIAM J. Math. Anal. 31, n. 4 (2000) 754-775. MR 1745143
  • [14] J. L. López, Uniform asymptotic expansions of symmetric elliptic integrals, Const. Approx. 17, n. 4 (2001) 535-559.
  • [15] M. L. Manocha, Integral expressions for Appell's functions $ {F_1}$ and $ {F_2}$, Riv. Mat. Univ. Parma 2, n. 8 (1967) 235-242. MR 0248354
  • [16] M. L. Manocha, Lie algebras of difference-differential operators and Appell functions $ {F_1}$, J. Math. Anal. Appl. 138 (1989) 491-510. MR 991038
  • [17] K. C. Mittal, Integral representations of Appell functions, Kyungpook Math. J. 17, n. 1 (1977) 101-107. MR 0457819
  • [18] W. Miller, Lie theory and the Appell functions $ {F_1}$, SIAM. J. Math. Anal. 4, n. 4 (1973) 638-655. MR 0374524
  • [19] P. O. M. Olsson, Integration of the partial differential equations for the hypergeometric functions $ {F_1}$ and $ {F_D}$ of two and more variables, J. Math. Phys. 5, (1964) 420-430. MR 0159964
  • [20] F. W. J. Olver, Special Functions: Asymptotics and Special Functions, Academic Press, New York, 1974. MR 0435697
  • [21] S. Pilipović, B. Stanković, and A. Takaci, Asymptotic Behaviour and Stieltjes Transformation of Distributions, Teubner Texte zur Mathematik, Band 116, 1990. MR 1062876
  • [22] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series, Vol. 1, Gordon and Breach Science Pub., 1990. MR 1054647
  • [23] B. L. Sharma, Some formulae for Appell functions, Proc. Camb. Phil. Soc. 67, (1970) 613-618. MR 0259181
  • [24] V. F. Tarasov, The generalizations of Slater's and Marvin's integrals and their representations by means of Appell's functions $ {F_2}\left( x, y \right)$, Mod. Phys. Lett. B, 8, n. 23 (1994) 1417-1426. MR 1301969
  • [25] N. M. Temme, Special functions: An introduction to the classical functions of mathematical physics, Wiley and Sons, New York, 1996. MR 1376370
  • [26] P. R. Vein, Nonlinear ordinary and partial differential equations associated with Appell functions, J. Differential Equations 11, (1972) 221-244. MR 0294726
  • [27] R. Wong, Distributional derivation of an asymptotic expansion, Proc. Amer. Math. Soc., 80 (1980) 266-270. MR 577756
  • [28] R. Wong, Asymptotic Approximations of Integrals, Academic Press, New York, 1989. MR 1016818

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 41A60, 33C65, 65D20

Retrieve articles in all journals with MSC: 41A60, 33C65, 65D20


Additional Information

DOI: https://doi.org/10.1090/qam/2054598
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society