Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Minimal entropy conditions for Burgers equation


Authors: Camillo De Lellis, Felix Otto and Michael Westdickenberg
Journal: Quart. Appl. Math. 62 (2004), 687-700
MSC: Primary 35L65; Secondary 35L45, 35L60, 35L67, 35Q53
DOI: https://doi.org/10.1090/qam/2104269
MathSciNet review: MR2104269
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider uniformly convex, $ 1 - d$ scalar conservation laws. We show that a single uniformly convex entropy is sufficient to characterize a Kruzhkov solution. The proof uses the concept of viscosity solution for the related Hamilton-Jacobi equation.


References [Enhancements On Off] (What's this?)

  • [1] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2000. MR 1857292
  • [2] L. Ambrosio, M. Lecumberry, T. Rivière, A viscosity property of minimizing micromagnetic configurations, Comm. Pure Appl. Math. 56 (2003), pp. 681-688. MR 1959737
  • [3] M. G. Crandall, P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), pp. 1-42. MR 690039
  • [4] C. Dafermos, Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2000. MR 1763936
  • [5] L. Giacomelli, F. Otto, New bounds for the Kuramoto-Shivashinsky equation, to appear in Comm. Pure Appl. Math. MR 2116616
  • [6] S. N. Kruzhkov, First order quasilinear equations in several independent variables, Math. Sb. 123 (1970), pp. 228-255; English transl. in Math. USSR Sbornik 10 (1970), pp. 217-243.
  • [7] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, volume 69 of Research Notes in Mathematics, Pitman Advanced Publishing Program, London, 1982. MR 667669
  • [8] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk. 12 (1957), pp. 3-73; English transl. in AMS Transl. 26 (1963), pp. 1155-1163.
  • [9] E. Y. Panov, Uniqueness of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mat. Zametki 55 (1994), pp. 116-129, 159; English transl. in Math. Notes 55 (1994), pp. 517-525. MR 1296003
  • [10] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. d. Königl. Ges. d. Wiss. zu Göttingen, Bd. 8 (1858/59) (Math. Cl.), pp. 43-65.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L65, 35L45, 35L60, 35L67, 35Q53

Retrieve articles in all journals with MSC: 35L65, 35L45, 35L60, 35L67, 35Q53


Additional Information

DOI: https://doi.org/10.1090/qam/2104269
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society