An -based algebraic approach to boundary stabilization for linear parabolic systems

Author:
Takao Nambu

Journal:
Quart. Appl. Math. **62** (2004), 711-748

MSC:
Primary 93D15; Secondary 35K50, 47N70, 93C20

DOI:
https://doi.org/10.1090/qam/2104271

MathSciNet review:
MR2104271

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the stabilization problem of linear parabolic boundary control systems. While the control system is described by a pair of standard linear differential operators , the corresponding semigroup generator generally admits *no* Riesz basis of eigenvectors. Very little information on the fractional powers of this generator is needed. In this sense our approach has enough generality as a prototype to be used for other types of parabolic systems. We propose in this paper a unified algebraic approach to the stabilization of a variety of parabolic boundary control systems.

**[1]**H. Amann,*Feedback stabilization of linear and semilinear parabolic systems*, LNPAM vol. 116, Marcel Dekker, New York, 1989 MR**1009387****[2]**C. I. Byrnes, D. S. Gilliam, V. I. Shubov, and G. Weiss,*Regular linear systems governed by a boundary controlled heat equation*, J. Dynamical and Control Systems**8**, 341-370 (2002) MR**1914447****[3]**R. F. Curtain,*Finite dimensional compensators for parabolic distributed systems with unbounded control and observation*, SIAM J. Control Optim.**22**, 255-276 (1984) MR**732427****[4]**D. Fujiwara,*Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order*, Proc. Japan Acad. Ser. A Math. Sci.**43**, 82-86 (1967) MR**0216336****[5]**J. S. Gibson and A. Adamian,*Approximation theory for linear quadratic-Gaussian optimal control of flexible structures*, SIAM J. Control. Optim.**29**, 1-37 (1991) MR**1088217****[6]**D. Gilbarg and N. S. Trudinger,*Elliptic Partial Differential Equations of Second Order*, 2nd ed., Springer-Verlag, New York, 1983 MR**737190****[7]**P. Grisvard,*Caractérisation de quelques espaces d'interpolation*, Arch. Rational Mech. Anal.**25**, 40-63 (1967) MR**0213864****[8]**S. Itô,*Diffusion Equations*, Amer. Math. Soc., Providence, 1992**[9]**T. Kato,*A generalization of the Heinz inequality*, Proc. Japan Acad. Ser. A Math. Sci.**37**, 305-308 (1961) MR**0145345****[10]**I. Lasiecka and R. Triggiani,*Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations*, J. Differential Equations**47**, 246-272 (1983) MR**688105****[11]**J. L. Lions and E. Magenes,*Non-Homogeneous Boundary Value Problems and Applications*, vol. I, Springer-Verlag, New York, 1972 MR**0350177****[12]**D. G. Luenberger,*Observers for multivariable systems*, IEEE Trans. Automat. Control,**AC-11**, 190-197 (1966) MR**0441429****[13]**T. Nambu,*On stabilization of partial differential equations of parabolic type: Boundary observation and feedback*, Funkcial. Ekvac.**28**, 267 298 (1985) MR**852115****[14]**-,*An extension of stabilizing compensators for boundary control systems of parabolic type*, J. Dynamics and Differential Equations**1**, 327-346 (1989) MR**1020709****[15]**-,*Characterization of the domain of fractional powers of a class of elliptic differential operators with feedback boundary conditions*, J. Differential Equations**136**, 294-324 (1997) MR**1448827****[16]**-,*An algebraic method of stabilization for a class of boundary control systems of parabolic type*, J. Dynamics and Differential Equations**13**, 59-85 (2001) MR**1822212****[17]**D. Salamon,*Infinite dimensional linear systems with unbounded control and observation: A functional analytic approach*, Trans. Amer. Math. Soc.**300**, 383-431 (1987) MR**876460****[18]**E. C. Titchmarsh,*The Theory of Functions*, The Clarendon Press, Oxford, 1939 MR**3155290****[19]**G. Weiss and R. F. Curtain,*Dynamic stabilization of regular linear systems*, IEEE Trans. Automat. Control**AC-42**, 4-21 (1997) MR**1439361****[20]**W. M. Wonham,*On pole assignment in multi-input controllable linear systems*, IEEE Trans. Automat. Control**AC-12**, 660-665 (1967)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
93D15,
35K50,
47N70,
93C20

Retrieve articles in all journals with MSC: 93D15, 35K50, 47N70, 93C20

Additional Information

DOI:
https://doi.org/10.1090/qam/2104271

Article copyright:
© Copyright 2004
American Mathematical Society