Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Nonlinear reptation in molecular based hysteresis models for polymers

Authors: H. T. Banks, Negash G. Medhin and Gabriella A. Pinter
Journal: Quart. Appl. Math. 62 (2004), 767-779
MSC: Primary 74D10; Secondary 35R10, 35R30, 74E35, 74H45
DOI: https://doi.org/10.1090/qam/2104273
MathSciNet review: MR2104273
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the linear ``stick-slip'' models of Doi-Edwards and Johnson-Stacer to nonlinear tube reptation models. We then show that such models, when combined with probabilistic formulations allowing distributions of relaxation times, provide a good description of dynamic experiments with highly filled rubber in tensile deformations. A connection to other applications including dielectric polarization and reptation in other viscoelastic materials (e.g., living tissue) is noted.

References [Enhancements On Off] (What's this?)

  • [1] Azmy S. Ackleh, H. T. Banks, and Gabriella A. Pinter, Well-posedness results for models of elastomers, J. Math. Anal. Appl. 268 (2002), no. 2, 440–456. MR 1896208, https://doi.org/10.1006/jmaa.2000.7281
  • [2] R.D. Andrews, Correlation of dynamic and static measurements on rubberlike materials, Ind. Engr. Chem., 44 (1952), 707-715.
  • [3] H. T. Banks, J. H. Barnes, A. Eberhardt, H. Tran, and S. Wynne, Modeling and computation of propagating waves from coronary stenoses, Comput. Appl. Math. 21 (2002), no. 3, 767–788. MR 1992370
  • [4] H. T. Banks and Kathleen L. Bihari, Modelling and estimating uncertainty in parameter estimation, Inverse Problems 17 (2001), no. 1, 95–111. MR 1818494, https://doi.org/10.1088/0266-5611/17/1/308
  • [5] H. T. Banks, David Bortz, Gabriella Pinter, and Laura Potter, Modeling and imaging techniques with potential for application in bioterrorism, Bioterrorism, Frontiers Appl. Math., vol. 28, SIAM, Philadelphia, PA, 2003, pp. 129–154. MR 2036544
  • [6] H. T. Banks and N. G. Medhin, A molecular based dynamic model for viscoelastic responses of rubber in tensile deformations, Comm. Appl. Nonlinear Anal. 8 (2001), no. 3, 1–18. MR 1856067
  • [7] H. T. Banks, Negash G. Medhin, and Gabriella A. Pinter, Multiscale considerations in modeling of nonlinear elastomers, Int. J. Comput. Methods Eng. Sci. Mech. 8 (2007), no. 2, 53–62. MR 2300863, https://doi.org/10.1080/15502280601149346
  • [8] H.T. Banks, H.T. Tran and S. Wynne, A well-posedness result for a shear wave propagation model, Intl. Series Num. Math., Vol.143, Birkhauser Verlag, Basel, 2002, 25-40.
  • [9] H. T. Banks and G. A. Pinter, Approximation results for parameter estimation in a class of abstract nonlinear hyperbolic systems, Appl. Math. Lett. 12 (1999), no. 6, 129–133. MR 1751420, https://doi.org/10.1016/S0893-9659(99)00091-9
  • [10] H.T. Banks, G.A. Pintér, L.K. Potter, M.J. Gaitens and L.C. Yanyo, Modeling of nonlinear hysteresis in elastomers under uniaxial tension, J. Intelligent Material Systems and Structures 10 (1999), 116-134.
  • [11] G. Bishko, T.C.B. McLeish, O.G. Harlen and R.G. Larson, Theoretical molecular rheology of branched polymers in simple and complex flows: The pom-pom model, Phys. Rev. Lett., 79 (1997), 2352-2355.
  • [12] R. Blackwell, O.G. Harlen and T.C.B. McLeish, Theoretical linear and nonlinear rheology of symmetric treelike polymer melts, Macromolecules 34 (2001), 2579-2596.
  • [13] R. Blackwell, T.C.B. McLeish and O.G. Harlen, Molecular drag-strain coupling in branched polymer melts, J. Rheology 44 (2000), 121-136.
  • [14] C.J.F. Böttcher and P. Bordewijk, Theory of Electric Polarization, Vol.II: Dielectrics in Time Dependent Fields, Elsevier, Amsterdam, 1978.
  • [15] M. Doi and M. Edwards, The Theory of Polymer Dynamics, Oxford, New York, 1986.
  • [16] J.D. Ferry, E.R. Fitzgerald, L.D. Grandine and M.L. Williams, Temperature dependence of dynamic properties of elastomers: relaxation distributions, Ind. Engr. Chem., 44 (1952), 703-706.
  • [17] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer Verlag, New York, 1993.
  • [18] R.S. Graham, T.C.B. McLeish and O.G. Harlen, Using the pom-pom equations to analyze polymer melts in exponential shear, J. Rheology 45 (2001), 275-290.
  • [19] A.R. Johnson, C.J. Quigley and J.L. Mead, Large strain viscoelastic constitutive models for rubber, part I: Formulations, Rubber Chemistry Technology 67 (1994), 904-917.
  • [20] A.R. Johnson and R.G. Stacer, Rubber viscoelasticity using the physically constrained systems' stretches as internal variables, Rubber Chemistry Technology 66 (1993), 567-577.
  • [21] A.R. Johnson, C.J. Quigley, D.G. Young and J.A. Danik, Viscohyperelastic modeling of rubber vulcanization, Tire Sci. Tech., 21 (1993), 179-199.
  • [22] T.C.B. McLeish and R.G. Larson, Molecular constitutive equations for a class of branched polymers: The pom-pom polymer, J. Rheology 42 (1998), 81-110.
  • [23] F. Schwarzl and A.J. Staverman, Higher approximation methods for the relaxation spectrum from static and dynamic measurements of viscoelastic materials, Appl. Sci. Res., A4 (1953), 127-141.
  • [24] D. ter Haar, A phenomenological theory of visco-elastic behaviour. I, II, III, Physica 16 (1950), 719–737, 738–752, 839–850. MR 0044345
  • [25] E.R. Von Schweidler, Studien uber die anomalien im verhalten der dielektrika, Ann. Physik 24 (1907), 711-770.
  • [26] K.W. Wagner, Zur theorie der unvollkommenen dielektrika, Ann. Physik 40 (1913), 817-855.
  • [27] M.L. Williams and J.D. Ferry, Second approximation calculations of mechanical and electrical relaxation and retardation distributions, J. Poly. Sci., 11 (1953), 169-175.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74D10, 35R10, 35R30, 74E35, 74H45

Retrieve articles in all journals with MSC: 74D10, 35R10, 35R30, 74E35, 74H45

Additional Information

DOI: https://doi.org/10.1090/qam/2104273
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society